Anatomy: Neck

A 28 year old climber falls from a steep rock wall and sustains significant injuries to his back. Imaging shows injuries that impinge on the posterior rami of several spinal nerves. Which of the following muscles is most likely to be affected in this patient:

- a. Levator scapulae
- b. Erector spinae
- c. Trapezius
- d. Latissimus dorsi
- e. Rhomboid major

[Buttons: Next > See Answer]
Anatomy: Neck

Questions 1 of 10

A 28 year old climber falls from a steep rock wall and sustains significant injuries to his back. Imaging shows injuries that impinge on the posterior rami of several spinal nerves. Which of the following muscles is most likely to be affected in this patient:

- Levator scapulae
- Erector spinae
- Trapezius
- Latissimus dorsi
- Rhomboid major

Answer

The intrinsic back muscles, including the erector spinae muscles, are innervated by the posterior rami of spinal nerves. The extrinsic back muscles (including the trapezius, latissimus dorsi, rhomboid major and minor, and levator scapulae muscles) are innervated by the anterior rami of spinal nerves.

Notes

Movements by the vertebral column include flexion, extension, lateral flexion and rotation. Rotation occurs predominantly in the thoracic columns.

Muscle of the back are organised into superficial, intermediate and deep groups:

- Extrinsic muscles (innervated by anterior ramus of spinal nerves)
 - The superficial group consists of muscles related to and involved with movements of the upper limbs.
 - The intermediate group consists of muscles attached to the ribs and involved in respiratory functions.
- Intrinsic muscles (innervated by posterior ramus of spinal nerves)
 - The deep group consists of muscles directly related to movements of the vertebral column and head.

The deep muscles of the back include:

- the splenius capitis and cervicis (extensors and rotators of the head and neck)
- the erector spinae and transversospinalis (extensors and rotators of the vertebral column)
- the short segmental muscles.

The erector spinae (highlighted red) is the largest group of intrinsic back muscles, lying posteriorly to the vertebral column between the spinous processes medially and the angles of the ribs laterally. The muscles in the erector spinae group are the primary extensors of the vertebral column and head. Acting bilaterally, they straighten the back, returning it to the upright position from the flexed position, and pull the head posteriorly. Acting unilaterally, they bend the vertebral column laterally.

Flexion of the vertebral column is provided predominantly by the rectus abdominis muscle assisted for rotation by the obliques.

By Henry Vandyke Carter (Public domain), via Wikimedia Commons
Anatomy: Neck

A 18 year old presents to ED with painful swollen exudative tonsils. You diagnose acute bacterial tonsillitis. Which of the following lymph nodes is most likely to first become visibly enlarged during tonsillitis:

a. Submandibular
b. Parotid
c. Preauricular
d. Submental
e. Jugulodigastric

< Previous Next > See Answer

Question Navigator

1 Answered
2 Current Question
3 ...
4 ...
5 ...
6 ...
7 ...
8 ...
9 ...
10 ...
11 ...
12 ...

FRCEM Success

We are an online revision resource for FRCEM Primary and Intermediate exam preparation.

Resources

- The Royal College of Emergency Medicine
- Irish Association for Emergency Medicine
- Advanced Trauma Life Support
- Resuscitation Council (UK)
- TeachMeAnatomy
- Trauma.org
- Radiopaedia
- Advanced Life Support Group
- Emergency Medicine Journal
- Lifeinthefastlane
- Instant Anatomy
- Patient.co.uk

©2014 - 2017 FRCEM Success | Website designed & hosted by Cyberfrog Design
Anatomy: Neck

A 18 year old presents to ED with painful swollen exudative tonsils. You diagnose acute bacterial tonsillitis. Which of the following lymph nodes is most likely to first become visibly enlarged during tonsillitis:

a) Submandibular
b) Parotid
c) Preauricular
d) Submental
e) Jugulodigastric

Answer

The jugulodigastric node directly receives lymphatic drainage from the palatine tonsils, tongue and pharynx.

Notes

The deep cervical nodes form a chain along the internal jugular vein and are divided into upper and lower groups.

The most superior node in the upper group (lying where the posterior belly of the digastric muscle crosses the internal jugular vein) is the jugulodigastric node which receives lymphatic drainage from the tonsils and tonsillar region.

The most superior node in the lower group (lying just inferior to the intermediate tendon of the omohyoid muscle) is the jugulo-omohyoid node which receives lymphatic drainage from the tongue.

By Henry Vandyke Carter [Public domain], via Wikimedia Commons
Anatomy: Neck

The intrinsic laryngeal muscles (except for the cricothyroid) are primarily innervated by which of the following nerves:

a Superior laryngeal nerve
b Recurrent laryngeal nerve
c Internal laryngeal nerve
d External laryngeal nerve
e Glossopharyngeal nerve

< Previous Next > See Answer Something wrong?
Anatomy: Neck

The intrinsic laryngeal muscles (except for the cricothyroid) are primarily innervated by the following nerves:

- Superior laryngeal nerve
- Recurrent laryngeal nerve
- Internal laryngeal nerve
- External laryngeal nerve
- Glossopharyngeal nerve

Answer

The recurrent laryngeal nerves are sensory to the laryngeal cavity below the level of the vocal folds and motor to all intrinsic muscles of the larynx except for the cricothyroid muscle (innervated by the superior laryngeal branch of the vagus nerve).

Notes

The larynx is suspended from the superior laryngeal nerve and attached to the trachea below by membranes and ligaments. It opens above into the pharynx immediately posterior and slightly inferior to the tongue and the epiglottal oropharynx of the oral cavity, and blends inferiorly with the trachea at the vertebral level C6.

Functions

There are four principal roles of the larynx:

- Phonation
- Sphincter to close the lower respiratory tract (for example during swallowing)
- Coughing
- Breath holding while straining (vocal cord adduction)

Laryngeal muscles

The laryngeal muscles are divided into intrinsic and extrinsic groups.

The intrinsic muscles alter the size and shape of the laryngeal inlet and move the vocal folds.

The extrinsic muscles are involved in elevation and depression of the larynx to produce swallowing.

Innervation

Motor and sensory innervation of the larynx is provided by the vagus nerve via its superior laryngeal and recurrent laryngeal branches.

The recurrent laryngeal nerves are sensory to the laryngeal cavity below the level of the vocal folds and motor to all intrinsic muscles of the larynx except for the cricothyroid muscle (innervated by the superior laryngeal branch of the vagus nerve).

A lesion of the recurrent laryngeal nerves may cause respiratory obstruction, hoarseness, inability to speak and loss of sensation below the vocal cord.

The superior laryngeal nerve supplies sensation to the mucous membrane above the vocal cord and the taste buds on the epiglottis, and motor innervation to the cricothyroid and the inferior pharyngeal constrictor muscles.

A lesion of the superior laryngeal nerve may cause loss of sensation above the vocal cord and taste on the epiglottis, and a weak laryngeal voice.

By Osk Reesers (via: Wikimedia Commons; Creative Commons BY-SA 2.5 2.0 1.0)
Anatomy: Neck

Question 4 of 78

A 34 year old woman presents to ED complaining of a hoarse voice. She underwent a thyroidectomy 2 weeks ago. Which of the following nerves was most likely injured during the procedure:

- a) External laryngeal nerve
- b) Glossopharyngeal nerve
- c) Recurrent laryngeal nerve
- d) Superior laryngeal nerve
- e) Internal laryngeal nerve

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Overview of IT

A 34 year old woman presents to ED complaining of a hoarse voice. She underwent a thyroidectomy 2 weeks ago. Which of the following nerves was most likely injured during the procedure:

a) External laryngeal nerve
b) Glossopharyngeal nerve
c) Recurrent laryngeal nerve
d) Superior laryngeal nerve
e) Internal laryngeal nerve

Answer

The larynx gland and the recurrent laryngeal nerve are in close proximity and thus this nerve is most likely injured in thyroid surgery. The recurrent laryngeal nerve supplies most of the motor innervation to the larynx and sensation below the true vocal folds.

Notes

The thyroid gland is anterior in the neck, below and lateral to the thyroid cartilage, and spanning between the C3 and T3 vertebrae.

It has two lateral lobes which cover the anteriolateral surfaces of the trachea, cricoid cartilage and the lower part of the thyroid gland connected by the isthmus which crosses the anterior surface of the second and third tracheal cartilages.

Relations

It lies deep in the sternohyoid, sternothyroid and omohyoid muscles, in the visceral compartment of the neck, together with and anterior to the pharynx, trachea and oesophagus, and surrounded by the pretracheal fascia.

Structures vulnerable in thyroid surgery include:

- Thyroidiaea artery
- Inferior thyroid vein
- Anterior jugular vein
- Recurrent laryngeal nerve
- Carnual artery of the pharynx
- Oesophagus
- Posterior thyroid glands

Blood supply

The thyroid gland is supplied predominantly by the superior thyroid artery (branch of the external carotid artery) and the inferior thyroid artery (branch of the thyrocervical trunk from the subclavian artery). Occasionally a small thyroids artery arises from the thyrocical trunk or the arch of the aorta and ascends to supply the thyroid gland.

Nervous supply

The venous drainage of the thyroid lobe to the superior and middle thyroid veins (draining to the internal jugular veins) and the inferior thyroid veins (draining to the the brachiocephalic veins).

Lymphatics

Lymphatic drainage of the thyroid gland is to nodes beside the trachea (paratracheal nodes) and to deep cervical nodes lateral to the esophageal muscles via the internal jugular veins.

Recurrent laryngeal nerve

The thyroglueal gland is closely related to the recurrent laryngeal nerves. After branching from the vagus nerve and looping around the subclavian artery on the right and the arch of the aorta on the left, the recurrent laryngeal nerves ascend in this nerve to a groove between the trachea and oesophagus. They pass deep to the posterior surface of the internal thoracic and enter the larynx by piercing deep to the lower margin of the interior constrictor of the pharynx.

The recurrent laryngeal nerve is the most commonly injured nerve during thyroid surgery. The recurrent laryngeal nerves supply sensory innervation to the laryngeal cavity below the level of the vocal folds and motor innervation to all intrinsic muscles of the larynx except for the cricothyoid muscle.

Resources:

- The Royal College of Emergency Medicine
- The British Society of Emergency Medicine
- Advanced Trauma Life Support
- Advanced Trauma Life Support
- Trauma Care Australia
- The British Medical Association
- Royal College of Surgeons
- Australia and New Zealand College of Anaesthetists
- Australian College of Emergency Medicine
- Royal Australasian College of Physicians
- Royal College of Surgeons of Ireland
- Royal College of Surgeons of Edinburgh

©2014 - 2021 CREM Success | Website designed and hosted by CyberDesign
Anatomy: Neck
Question 5 of 78

Regarding the pharynx, which of the following statements is CORRECT:

a. The pharynx is continuous with the oesophagus at vertebral level C4.
b. The pharyngotympanic tubes open into the lateral walls of the oropharynx.
c. The pharyngeal wall is formed by two sheet-like constrictor muscles.
d. All of the muscles of the pharynx are innervated by the glossopharyngeal nerve.
e. The lymphatics of the pharynx drain to the deep cervical lymph nodes.

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 1 of 10

Regarding the pharynx, which of the following statements is CORRECT?

a) The pharynx is continuous with the oesophagus at vertebral level C4.
 ✗

b) The pharyngoesophageal fold opens into the lateral walls of the oesophagus.

b) The pharyngeal wall is formed by two sheet-like constrictor muscles.

c) All of the muscles of the pharynx are innervated by the glossopharyngeal nerve.

b) The sympathetic of the pharynx drain to the deep cervical lymph nodes.

Answer

Lymphatic vessels from the pharynx drain into the deep cervical lymph nodes.

Notes

The pharynx is a musculofacial structure that connects the oral and nasal cavities in the head to the larynx and the oesophagus in the neck.

The pharynx is attached above to the base of the skull, is continuous below, approximately at the level of vertebral C6, with the top of the oesophagus.

The pharynx is separated from the posterior vertebral column by a thin membropharyngeal space, bordered anteriorly by the buccopharyngeal fascia and posteriorly by the prevertebral fascia.

Arrangement

The walls of the pharynx are attached anteriorly to the margins of the nasal cavities, oral cavity and larynx, dividing the pharynx into the continuous nasopharynx, oropharynx and laryngopharynx respectively.

The posterior apertures of the oral cavities open into the oesophagus, the oropharyngeal lumen opens into the oropharynx and the superior aperture of the larynx opens into the laryngopharynx.

The pharyngopalatine tubules (from the middle ear) open into the lateral walls of the nasopharynx.

By OpenStax College (CC BY 3.0), via Wikimedia Commons

Muscles

The muscles of the pharyngeal wall are organised into two groups.

The three sheet-like constrictor muscles control the pharyngeal cavity sequentially to move a bolus of food through the pharynx and into the oesophagus during swallowing.

The three longitudinal muscles elevate the pharyngeal wall; or during swallowing, pull the pharyngeal wall up and over a bolus of food being moved through the pharynx into the oesophagus.

Nerves supply

The muscles of the pharynx are all innervated by the vagus nerve except for the stylopharyngeus muscle innervated by the glossopharyngeal nerve. The branches of the vagus and glossopharyngeal nerves form a pharyngeal plexus in the outer fascia of the pharyngeal wall.

Each subdivision of the pharynx has a different sensory innervation:

- the oesopharynx is innervated by the maxillary nerve
- the oropharynx is innervated by the glossopharyngeal nerve
- the laryngopharynx is innervated by the vagus nerve.

Lymphatics

Lymphatic vessels from the pharynx drain into the deep cervical lymph nodes.
Anatomy: Neck

Question 6 of 78

A 18 year old female is brought to ED with a fever, headache and neck stiffness. Meningitis is suspected, and your consultant asks you to perform a lumbar puncture. CSF is withdrawn from which of the following spaces:

- a. Epidural space
- b. Subarachnoid space
- c. Subdural space
- d. Space between the spinal cord and the pia mater
- e. Space between the dura mater and the spinal canal
Anatomy: Neck

Question 1 of 78

A 18 year old female is brought to ED with a fever, headache and neck stiffness. Meningitis is suspected, and your consultant asks you to perform a lumbar puncture. CSF is withdrawn from which of the following spaces:

a) Epidural space
 b) Subarachnoid space
 c) Subdural space
 d) Space between the spinal cord and the pia mater
 e) Space between the dura mater and the spinal canal

Answer

CSF is withdrawn from the subarachnoid space between the arachnoid mater and the pia mater.

Notes

The vertebral canal extends from the first cervical vertebra (C1) to the last sacral vertebra (S5). Superiorly the vertebral canal is continuous, through the foramen magnum of the skull, with the cranial cavity.

The vertebral canal is bounded anteriorly by the vertebral bodies, intervertebral discs and the posterior longitudinal ligament, laterally by the vertebral pedicles and posteriorly by the vertebral laminae.

The vertebral canal contains the spinal cord and its protective membranes, together with blood vessels, connective tissue, fat and spinal nerve roots. The conus medullaris is the point below which the canal contains only the cauda equina and filum terminale.

Meninges

The spinal cord is surrounded by a series of three spinal meninges consisting of a dura, arachnoid and pia mater.

The bony walls of the spinal canal are separated from the meninges by the epidural (extradural) space.

The subarachnoid space, containing CSF, is found between the arachnoid mater and pia mater. The subarachnoid space extends along the spinal cord space is continuous at the foramen magnum with the subarachnoid space surrounding the brain.

Lumbar puncture

In adults, the spinal cord typically ends between L1/L2 whereas the subarachnoid space extends to approximately the lower border of vertebra S2. As a result of this, CSF can be withdrawn from the subarachnoid space in the lower lumbar region without endangering the spinal cord.

When performing a lumbar puncture, the needle passes between adjacent vertebral spinous processes, through the supraspinous and interspinous ligaments and through the ligamentum flavum to enter the extradural space. The needle then continues through the dura and the arachnoid mater to enter the subarachnoid space.

Layers penetrated during lumbar puncture:

- Skin
- Superficial fascia
- Supraspinous ligament
- Interspinous ligament
- Ligamentum flavum (first ‘give’)
- Extradural space
- Dura mater (second ‘give’)
- Subdural space
- Arachnoid mater
- Subarachnoid space (containing CSF)

Resources

- The Royal College of Emergency Medicine
- ACEM Exams and Study Modules
- Advanced Trauma Life Support
- Anaesthetic Council UK
- TouchMeAnatomy
- Imaging
- Radiopaedia

Advanced Life Support Group
- Emergency Medicine Journal
- LifelineAustralia
- Instant Anatomy
- Patients.co.uk

©2014 - 2017 FRCEM Success | Website designed & hosted by Cybering Design
Anatomy: Neck

Question 7 of 78

The phrenic nerve receives contributions from which of the following:

- a Anterior rami of C1 – C3
- b Anterior rami of C3 – C5
- c Anterior rami of C5 – C7
- d Posterior rami of C2 – C6
- e Posterior rami of C1 – C4
Anatomy: Neck

Question 7 of 78

The phrenic nerve receives contributions from which of the following:

a) Anterior rami of C1 – C3
 - X
b) Anterior rami of C3 – C5
 - ✓
c) Anterior rami of C5 – C7

d) Posterior rami of C2 – C6

e) Posterior rami of C1 – C4

Answer

The phrenic nerves are branches of the cervical plexus, arising on each side as contributions from the anterior rami of C3 – C5 come together.

Notes

The phrenic nerves are branches of the cervical plexus, arising on each side as contributions from the anterior rami of C3 – C5 come together.

Passing around the upper lateral border of each anterior scalene muscle, the phrenic nerves continue inferiorly across the anterior surface of the anterior scalene muscle within the prevertebral fascia.

Leaving the lower edge of the anterior scalene muscle, each phrenic nerve passes between the subclavian vein and artery to enter the thorax to continue to the diaphragm.

Modified by FRCEM Success. Original by Henry Vandyke Carter [Public domain], via Wikimedia Commons

< Previous Next >
Anatomy: Neck

Question 8 of 78

Regarding the recurrent laryngeal nerve, which of the following statements is CORRECT:

a. The recurrent laryngeal nerves are branches of the phrenic nerve.
b. Damage to the recurrent laryngeal nerve classically causes uvula deviation.
c. The right recurrent laryngeal nerve passes beneath and curves around the subclavian artery before ascending in the root of the neck.
d. The left recurrent laryngeal nerve originates in the root of the neck.
e. The recurrent laryngeal nerves ascend anterior to the trachea.

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 6 of 70

Regarding the recurrent laryngeal nerve, which of the following statements is CORRECT?

a) The recurrent laryngeal nerves are branches of the phrenic nerve.

b) Damage to the recurrent laryngeal nerve classically causes a tracheal deviation.

c) The right recurrent laryngeal nerve passes beneath and curves around the subclavian artery before ascending in the root of the neck.

d) The left recurrent laryngeal nerve originates in the root of the neck.

e) The recurrent laryngeal nerves ascend anterior to the trachea.

Answer

The right recurrent laryngeal nerve originates in the root of the neck, as a branch of the right vagus nerve as it reaches the lower edge of the first part of the subclavian artery. It passes around the subclavian artery and travels upwards and medially in a groove between the trachea and the oesophagus as it heads to the larynx.

Notes

The left recurrent laryngeal nerve originates in the root of the neck, as a branch of the right vagus nerve as it reaches the lower edge of the first part of the subclavian artery. It passes around the subclavian artery and travels upwards and medially in a groove between the trachea and the oesophagus as it heads to the larynx.

The left recurrent laryngeal nerve originates more inferiorty, from the left vagus nerve as it crosses the arch of the aorta in the superior mediastinum. It passes below and behind the arch of the aorta and then ascends beside the trachea to reach the larynx.

Damage to the recurrent laryngeal nerves may result in hoarseness, respiratory obstruction, inability to speak and loss of sensation below the vocal cord.

Causes of damage include:

- Thymic/parathyroid surgery
- mediastinal lymphadenopathy
- aortic arch aneurysm
- aneurysm of the aortic arch
- lung cancer in the apex of the right lung
- malignancy infiltrating into the ‘aortopulmonary window’

By Anwesh (Based on drawing by Truth-seeker (2004) CC BY-SA 3.0) (https://creativecommons.org/licenses/by-sa/3.0), via Wikimedia Commons

FRCEMSuccess

Terms & Conditions
Get In Touch

©2014 - 2017 FRCEM Success | Website designed & hosted by Cyberfrog Design

Resources

- The Royal College of Emergency Medicine
- MedScape
- American Council Of Emergency Physicians
- Joint Commission On Accreditation Of Healthcare Organizations
- Hospital Compare
- RapidEms
- Wikipedia
- ActiveWorld Support Group
- Emergency Medicine Journal
- American Academy Of Emergency Medicine
- National Academy
Anatomy: Neck

Question 9 of 78

The scalenus anterior muscle is innervated by which of the following:

- (a) Thoracodorsal nerve
- (b) Long thoracic nerve
- (c) Accessory nerve
- (d) Cervical nerves C4 – C7
- (e) Cervical nerves C2 – C3

< Previous Next > See Answer
Anatomy: Neck

Question 3 of 75

The scalenus anterior muscle is innervated by which of the following:

a) Thoracodorsal nerve ×
b) Long thoracic nerve
c) Accessory nerve
d) Cervical nerves C4 – C7 ✓
e) Cervical nerves C2 – C3

Answer

The scalenus anterior is innervated by the anterior rami of C4 – C7.

Notes

The scalenus anterior is a synergistic stabiliser of the neck and acts together with the other scalene muscles to elevate rib 1.

It originates from the anterior tubercles of the transverse processes of vertebrae C3 – C6 and inserts onto the scalene tubercle and upper surface of rib 1.

It is innervated by the anterior rami of C4 – C7.

By User:Mikael Högström (Image:Gray387.png) | Public domain, Public domain or Public domain, via Wikimedia Commons
Anatomy: Neck

A 28 year old male patient is brought to ED following a motorbike accident. On performing a full neurological examination you note that the patient has weakness of the right side of the body with an extensor reflex and hyperreflexia, loss of fine-touch and vibration on the right side of the body and loss of pain and temperature and the left side of the body. These clinical features are most likely caused by which of the following lesions:

- Central cord syndrome
- Hemisection of the right cervical spinal cord
- Hemisection of the left cervical spinal cord
- Anterior cord syndrome
- Complete transection of the cervical spinal cord

< Previous Next > See Answer
Anatomy: Neck

Question 11 of 78

A 18 year old presents to ED complaining of a sore throat and painful swallowing. On examination you note that his palatine tonsils are swollen and exudative. Which of the following best describes the location of the palatine tonsils:

- **a** Lateral wall of oropharynx posterior to the palatopharyngeal arch
- **b** Pharyngeal surface of tongue
- **c** Lateral wall of oropharynx anterior to the palatoglossal arch
- **d** Roof of the nasopharynx
- **e** Lateral wall of oropharynx between palatoglossal arch and palatopharyngeal arch

< Previous Next > See Answer Something wrong? Clear Exam
Anatomy: Neck

Answer

The parotid salivary glands are located in the parotid region of the neck. They are paired glands located on the sides of the face, just below the ears. Each gland has a main duct that opens into the mouth through the parotid papilla, which is located on the inner surface of the cheek. The parotid salivary glands produce saliva, which plays a crucial role in the digestive process.

Notes

- The parotid salivary glands are located in the parotid region of the neck. They are paired glands located on the sides of the face, just below the ears. Each gland has a main duct that opens into the mouth through the parotid papilla, which is located on the inner surface of the cheek. The parotid salivary glands produce saliva, which plays a crucial role in the digestive process.
- The parotid salivary glands are the largest salivary glands in the body and are responsible for producing about 75% of the saliva that is produced daily. They are divided into three lobes: the anterior lobe, the intermediate lobe, and the posterior lobe. The anterior lobe is the largest and produces the bulk of the saliva, while the intermediate and posterior lobes produce smaller amounts.
- The parotid salivary glands are innervated by the facial and auriculotemporal nerves. The facial nerve provides parasympathetic stimulation, while the auriculotemporal nerve provides sensory input.

BocaSalus

By BocaSalus [Corporation], Boca Salus [Corporation].

Resources

- The Facial and Parotid Salivary Glands
 - Anatomy
 - Physiology

- Salivary Glands
 - Overview
 - Function
 - Disorders

- Facial Nerve
 - Anatomy
 - Physiology

- Auriculotemporal Nerve
 - Anatomy
 - Physiology
Anatomy: Neck

A 73 year old man presents to ED with a longstanding ulceration to the tip of his tongue. Biopsy demonstrates squamous cell carcinoma. Which lymph nodes will most likely be involved in spread of the cancer cells:

- **a** Pre-auricular
- **b** Mastoid
- **c** Jugulodigastric
- **d** Jugulo-omohyoid
- **e** Supraclavicular

< Previous Next > See Answer

1 Answered
2 Answered
3 Answered
4 Answered
5 Answered
6 Answered
7 Answered
8 Answered
9 Answered
10 Answered
11 Answered
12 Current Question

Clear Exam

©2014 - 2017 FRCEM Success | Website designed & hosted by Cyberfrog Design
Anatomy: Neck

A 73 year old man presents to ED with a longstanding ulceration to the tip of his tongue. Biopsy demonstrates squamous cell carcinoma. Which lymph nodes will most likely be involved in spread of the cancer cells:

- a) Pre-auricular
- b) Mastoid
- c) Jugulo-epigastric
- d) Jugulo-omohyoid
- e) Supraclavicular

Answer

The tip of the tongue drains either directly into or via superficial submental nodes into the jugulo-omohyoid deep cervical lymph node.

Notes

The deep cervical nodes form a chain along the internal jugular vein and are divided into upper and lower groups.

The most superior node in the upper group (lying where the posterior belly of the digastric muscle crosses the internal jugular vein) is the jugulo-epigastric node which receives lymphatic drainage from the tonsils and tonsillar region.

The most superior node in the lower group (lying just inferior to the intermediate tendon of the omohyoid muscle) is the jugulo-omohyoid node which receives lymphatic drainage from the tongue.

By Henry Vandyke Carter [Public domain], via Wikimedia Commons

FRCEM Success

We are an online revision resource for FRCEM Primary and Intermediate exam preparation.

Terms & Conditions
Get in Touch

Resources
- The Royal College of Emergency Medicine
- Irish Association for Emergency Medicine
- Advanced Trauma Life Support
- Resuscitation Council (UK)
- TraumaMcAnatomy
- Trauma.org
- Radiopedia
- Advanced Life Support Group
- Emergency Medicine Journal
- Lifesupportbrian
- Trauma Anatomy
- PatientLabs

©2014-2017 FRCEM Success | Website designed & hosted by Cyberfrog Design
Anatomy: Neck

Question 13 of 78

Transection of the anterolateral tract of the spinal cord results in which of the following clinical features:

a. Cerebellar incoordination
b. Loss of pain and temperature sensation
c. Loss of proprioception
d. Loss of vibration and fine-touch sensation
e. Complete flaccid paralysis

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 14 of 78

Which of the following spinal tracts is involved with the control of trunk muscles:

a. Anterior spinothalamic tract
b. Lateral spinothalamic tract
c. Posterior column
d. Anterior corticospinal tract
e. Posterior corticospinal tract
Incomplete lesions of the spinal cord

Central Cord Syndrome

Asymmetrical Cord Syndrome

Brown-Séquard Syndrome

Anatomy Facts

- Name:
- Description:
- Associated conditions:

Incomplete Lesions of the Spinal Cord

- Central Cord Syndrome
- Asymmetrical Cord Syndrome
- Brown-Séquard Syndrome

- Associated symptoms
- Pathological processes

- Treatment
- Prognosis
Anatomy: Neck

Question 15 of 78

Regarding Horner’s syndrome, which of the following statements is CORRECT:

a. Ptosis occurs due to paralysis of the levator palpebrae superioris muscle.
b. Mydriasis is a typical feature.
c. Miosis occurs due to paralysis of the dilator pupillae muscle.
d. Horner’s syndrome results from damage to secretomotor parasympathetic fibres.
e. Horner’s syndrome results from damage to the oculomotor nerve.
Anatomy: Neck

Regarding Horner’s syndrome, which of the following statements is CORRECT:

- **a** Ptosis occurs due to paralysis of the levator palpebrae superioris muscle.
- **b** Mydriasis is a typical feature.
- **c** Miosis occurs due to paralysis of the dilator pupillae muscle.
- **d** Horner’s syndrome results from damage to secretomotor parasympathetic fibres.
- **e** Horner’s syndrome results from damage to the oculomotor nerve.

< Previous Next > See Answer Something wrong? Clear Exam
Anatomy: Neck

Question 15 of 78

Regarding Horner’s syndrome, which of the following statements are CORRECT:

- a) Ptosis occurs due to paralysis of the levator palpabre superioris muscle. ✗
- b) Mydriasis is a typical feature. ✓
- c) Miosis occurs due to paralysis of the dilator pupillae muscle. ✗
- d) Horner’s syndrome results from damage to sympathetic parasympathetic fibres. ✗
- e) Horner’s syndrome results from damage to the oculosympathetic nerve.

Answer

Horner’s syndrome is characterised by pupil constriction, partial ptosis and anhidrosis.

Notes

The sympathetic trunks are two parallel cords that run from the base of the skull to the coccyx. Along the way they are punctuated by ganglia, collections of neuronal cell bodies outside of the CNS. The cervical part of the sympathetic trunk is anterior to the longus colli and longus capitis muscles and posterior to the common carotid artery in the carotid sheath.

There are three ganglia along the course of the sympathetic trunk in the cervical region which ascend proparaganglionic sympathetic fibres from the upper thoracic spinal cord levels synapse with postganglionic sympathetic fibres. The postganglionic fibres are distributed from these ganglia in branches, called grey ram communicans, which connect with cervical spinal nerves C1 – C8.

Superior cervical ganglion

The superior cervical ganglion is responsible for sympathetic innervation to the structures in the head and neck. The superior cervical ganglion lies in the area of vertebra C1 – C2 and has branches to:

- the internal and external carotid arteries
- the internal carotid arteries
- the cervical spinal nerves C1 – C4
- the pharynx
- the heart.

Middle cervical ganglion

The middle cervical ganglion lies in the area of vertebra C6 and has branches to:

- cervical spinal nerves C5 – C6
- the heart.

 Inferior cervical ganglion

The inferior cervical ganglion lies in the area of vertebra C7 (anterior to the neck of rib 1, posterior to the first part of the subclavian artery), combines with the first thoracic ganglion to form the cervicothoracic ganglion and has branches to:

- spinal nerves C7 – T1
- the vertebral and subclavian artery
- the heart.

This ganglion may also receive white ram communicans from thoracic spinal nerves T1 – T2.

Horner’s syndrome

The sympathetic fibres can be stretched or damaged along their course and if unilateralistically disturbed may produce Horner’s syndrome, a triad of partial ptosis (due to paralysis of the superior tarsal muscle), miosis (due to paralysis of the dilator pupillae muscle) and anhidrosis (due to loss of Innervation to the sweat glands).

Secondary changes may also include unilateral vasodilatation (due to loss of sympathetic control of cutaneous blood vessels) and enopthalmos (due to paralysis of the orbitalis muscle).

Possible causes of Horner’s syndrome include:

- Apical lung tumour (Pancoast’s tumour) eroding the cervicothoracic ganglion
- Thoracic meningioma
- Penetrating injury to neck
- Lymphadenopathy
- Cervical rib
- Injury to carotid arteries

< Previous Next >
Anatomy: Neck

Question 16 of 78

The sensory innervation of the laryngopharynx is provided by which of the following nerves:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Glossopharyngeal nerve</td>
</tr>
<tr>
<td>b</td>
<td>Maxillary nerve</td>
</tr>
<tr>
<td>c</td>
<td>Mandibular nerve</td>
</tr>
<tr>
<td>d</td>
<td>Facial nerve</td>
</tr>
<tr>
<td>e</td>
<td>Vagus nerve</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Answered</td>
</tr>
<tr>
<td>2</td>
<td>Answered</td>
</tr>
<tr>
<td>3</td>
<td>Answered</td>
</tr>
<tr>
<td>4</td>
<td>Answered</td>
</tr>
<tr>
<td>5</td>
<td>Answered</td>
</tr>
<tr>
<td>6</td>
<td>Answered</td>
</tr>
<tr>
<td>7</td>
<td>Answered</td>
</tr>
<tr>
<td>8</td>
<td>Answered</td>
</tr>
<tr>
<td>9</td>
<td>Answered</td>
</tr>
<tr>
<td>10</td>
<td>Answered</td>
</tr>
<tr>
<td>11</td>
<td>Answered</td>
</tr>
<tr>
<td>12</td>
<td>Answered</td>
</tr>
</tbody>
</table>

< Previous Next > See Answer Something wrong? Clear Exam
Anatomy: Neck

Question 9.1
The sensory innervation of the laryngopharynx is provided by which of the following nerves:

a) Glossopharyngeal nerve ✗
 - Carotid sinus nerve
 - Facial nerve
 - Vagus nerve ✓

Answer

Each subdivision of the pharynx has a different sensory innervation:

- the nasopharynx is innervated by the maxillary nerve
- the oropharynx is innervated by the glossopharyngeal nerve
- the laryngopharynx is innervated by the vagus nerve.

Notes

The pharynx is a musculoskeletal structure that connects the oral and nasal cavities in the head to the larynx and the oesophagus in the neck.

The pharynx is attached above to the base of the skull, and is continuous below, approximately at the level of vertebra C6, with the top of the oesophagus.

The pharynx is separated from the posterolateral cervical column by a thin muscular pharyngeal space, bordered anteriorly by the buccopharyngeal fascia and posteriorly by the pretracheal fascia.

Anastomosis

The walls of the pharynx are attached anteriorly to the margins of the nasal cavities, oral cavity and larynx, dividing the pharynx into the nasopharynx, oropharynx and laryngopharynx respectively.

The posterior apertures of the nasal cavities open into the nasopharynx, the oropharyngeal inlet opens into the oropharynx and the superior aperture of the larynx opens into the laryngopharynx.

The pharyngocutaneous tubes (from the middle ear) open into the lateral walls of the nasopharynx.

Muscles

The muscles of the pharyngeal wall are organised into two groups.

The three lateral constrictor muscles constitute the pharyngeal cavity sequentially to allow a block of food through the pharynx and into the oesophagus during swallowing.

The three longitudinal muscles elevate the pharyngeal wall, or during swallowing, pull the pharyngeal wall up and over a block of food being moved through the pharynx into the oesophagus.

Nerve supply

The muscles of the pharynx are all innervated by the vague nerve except for the stylopharyngeus muscle, innervated by the glossopharyngeal nerve. The branches of the vagus and glossopharyngeal nerves form the pharyngeal plexus in the outer fascia of the pharyngeal wall.

Each subdivision of the pharynx has a different sensory innervation:

- the nasopharynx is innervated by the maxillary nerve
- the oropharynx is innervated by the glossopharyngeal nerve
- the laryngopharynx is innervated by the vagus nerve.

Lymphatics

Lymphatic vessels from the pharynx drain into the deep cervical lymph nodes.
Anatomy: Neck
Question 17 of 78

Regarding the vertebrae, which of the following statements is CORRECT:

a. There are 28 vertebrae in the human spine.
b. There are 8 cervical vertebrae.
c. The vertebral arch is anchored to the posterior surface of the vertebral body by two laminae.
d. The transverse process is the site of articulation with the ribs in the thoracic region.
e. The spinous process projects posteriorly and inferiorly from the vertebral body.

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 17 of 78

Regarding the vertebrae, which of the following statements is CORRECT:

a) There are 28 vertebrae in the human spine.
b) There are 8 cervical vertebrae.
c) The vertebral arch is anchored to the posterior surface of the vertebral body by two laminar processes.
d) The transverse process is the site of articulation with the ribs in the thoracic region.
e) The spinous process projects posteriorly and inferiorly from the vertebral body.

Answer

On each side of the vertebral arch, a transverse process extends laterally from the region where a lamina meets a pedicle and is a site for articulation with ribs in the thoracic region.

Notes

The vertebrae column consists of 33 vertebrae: seven cervical, twelve thoracic, five lumbar, five fused sacral and four fused coccygeal vertebrae.

A typical vertebra consists of a vertebral body and a vertebral arch.

The vertebral body is anterior and is separated from adjacent vertebral bodies by fibrocartilaginous intervertebral discs. The size of the vertebral body increases inferiorly as the amount of weight supported increases.

The vertebral arch is anchored to the posterior surface of the vertebral body by two pedicles, which form the lateral pillars of the arch. The roof of the vertebral arch is formed by the right and left laminae which fuse at the midline.

A spinous process projects posteriorly and inferiorly from the roof of the vertebral arch and is a site for muscle and ligament attachment.

On each side of the vertebral arch, a transverse process extends laterally from the region where a lamina meets a pedicle and is a site for articulation with ribs in the thoracic region. From the same region, a superior articular process and an inferior articular process articulate with similar processes on adjacent vertebrae.

The vertebral arches are aligned to form the lateral and posterior walls of the vertebral foramen; the vertebral foramina of all the vertebrae together form the vertebral canal.

By Jimartin (Own work) [CC BY-SA 3.0], via Wikimedia Commons
Anatomy: Neck

Question 18 of 78

Regarding the neck fascia, which of the following statements is CORRECT:

- a. The investing layer of the deep fascia lies deep to the pretracheal layer.
- b. The thyroid gland lies anterior to the pretracheal layer.
- c. The deep fascia is further divided into two layers.
- d. The vagus nerve is contained within the carotid sheath.
- e. The pretracheal space communicates directly with the posterior mediastinum.

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 38 of 79

Regarding the neck fascia, which of the following statements is CORRECT:

a) The investing layer of the deep fascia lies deep to the pretracheal layer.
 ✗

b) The prelaminar layer anterior to the pretracheal layer.
 ✗

c) The deep fascia is further divided into two layers.
 ✗

d) The vagus nerve is contained within the carotid sheath.
 ✗

e) The pretracheal space communicates directly with the posterior mediastinum.

Answer

The carotid sheath contains the common carotid artery, the internal carotid artery, the internal jugular vein and the vagus nerve.

Notes

Neck fascia

The neck fascia is divided into the superficial and deep fascia.

The deep fascia is further divided into:

- 1) an investing layer (blue) which lies deep to the superficial fascia and surrounds all structures in the neck.
- 2) the prelaminar layer (green) which surrounds the vertebral column and the deep muscles associated with the back.
- 3) the pretracheal layer (yellow) which encloses the visceras of the neck (the trachea, esophagus and thyroid).
- 4) the carotid sheaths (red) which receive a contribution from the other three fascial layers and surround the two major neurovascular bundles on either side of the neck (containing the common carotid artery, the internal carotid artery, the internal jugular vein and the vagus nerve).

The trapezius and sternocleidomastoid muscles lie within the investing layer of the deep cervical fascia.

The muscles of the neck lie anterior to the pretracheal fascia, within the pretracheal layer.

The prevertebral muscles lie within the prevertebral fascial layer and act as weak neck flexors.

Neck spaces

Between the fascial layers in the neck are spaces that may provide a conduit for the spread of infections from the neck to the mediastinum:

The pretracheal space lies between the investing layer of cervical fascia and the pretracheal fascia and passes between the neck and the anterior part of the superior mediastinum.

The retropharyngeal space lies between the buccopharyngeal fascia (this part of the pretracheal fascia posterior to the pharynx) and the prevertebral fascia and extends from the base of the skull to the upper part of the posterior mediastinum.

The prevertebral space is within the prevertebral layer as it splits into two lumens, extending from the base of the skull and extends through the posterior mediastinum to the diaphragm.
Anatomy: Neck

Question 19 of 78

Regarding the cervical sympathetic trunk, which of the following statements is CORRECT:

a. The preganglionic sympathetic fibres originate from spinal cord segments C4 – C8.
b. The sympathetic trunk lies anterior to the carotid sheath in the neck.
c. The postganglionic sympathetic fibres pass from the sympathetic trunk in gray rami communicantes to connect with the cervical spinal nerves.
d. There are five main ganglia along the course of the sympathetic trunk in the cervical region.
e. Horner’s syndrome is characterised by pupil constriction and complete ptosis.
Anatomy: Neck

Questions 1 to 30

Correct:

a) The preganglionic sympathetic fibres originate from spinal cord segments C4 – C8.

b) The sympathetic trunk lies anterior to the carotid sheath in the neck.

c) The postganglionic sympathetic fibres pass from the sympathetic trunk in grey rami communicantes to connect with the spinal nerves.

d) There are five pairs of ganglia along the course of the sympathetic trunk in the cervical region.

e) Homer’s syndrome is characterised by conjunctival and complete ptosis.

Answer

There are three ganglia along the course of the sympathetic trunk in the cervical region within which ascending preganglionic sympathetic fibres from upper thoracic spinal cord level synapse with postganglionic sympathetic fibres. The postganglionic fibres are distributed from these ganglia in branches, called grey ramii communicantes, which connect with spinal cord nerves C1 – C8. Homer’s syndrome is characterised by constant partial ptosis due to paralysed superior tarsal muscle (not complete ptosis as the levator palpebrae superioris muscle function is preserved).

Notes

The sympathetic trunks are two parasympathetic nerves that run from the base of the skull to the coccyx. Along the way they are punctuated by ganglia, collections of neurones and blood vessels outside the CNS. The cervical part of the sympathetic trunk is anterior to the larynx and laryngeal muscles and posterior to the common carotid artery in the carotid sheath.

There are three ganglia along the course of the sympathetic trunk in the cervical region within which ascending preganglionic sympathetic fibres from upper thoracic spinal cord level synapse with postganglionic sympathetic fibres. The postganglionic fibres are distributed from these ganglia in branches, called grey ramii communicantes, which connect with spinal cord nerves C1 – C8.

Superior cervical ganglion

The superior cervical ganglion is responsible for sympathetic innervation to the structures in the head and neck. The superior cervical ganglion lies in the area of vertebra C1 – C2 and has branches to:

- the internal and external carotid arteries
- the cervical spinal nerves C1 – C4
- the pharynx
- the heart.

Middle cervical ganglion

The middle cervical ganglion lies in the area of vertebra C6 and has branches to:

- cervical spinal nerves C5 – C6
- the heart.

Inferior cervical ganglion

The inferior cervical ganglion lies in the area of vertebra C7 anterior to the neck of rib 1, posterior to the first part of the subclavian artery, and combines with the first thoracic ganglion to form the cervicothoracic ganglion and has branches to:

- spinal nerves C7 – T1
- the vertebral and subclavian arteries
- the heart.

This ganglion may also receive white rami communicantes from thoracic spinal nerves T1 – T2.

Homer’s syndrome

The sympathetic fibres can be stretched, or damaged along their course, and will subsequently deter the production of Homer’s syndrome, a neural destruction of the superior salivary muscles, and weakness of the external ocular muscles.

Secondary changes may also include dysphagia (change to loss of sympathetic control of submaxillary blood vessels) and palsy (due to paralysis of the lemniscus muscles).

Possible causes of Homer’s syndrome include:

- Apical lung tumour (Pancoast’s syndrome) eroding the cervicothoracic ganglia
- Thyroid carcinoma
- Perforating injury to neck
- Lymphadenopathy
- Cervical ribs
- Injury to carotid arteries

FRCEM Success

We are an examination revision resource for FRCEM Primary and Intermediate examinations.

T&Cs & Privacy
Get in Touch

Resources

- The Royal College of Emergency Medicine
- Webinar Association for Emergency Medicine
- Annual Scientific Congress Support
- Association of Critical IC
- Emergency Medicine Journal
- Radiorad
- Advanced Life Support Group
- Emergency Medicine Journal
- Ultrasound in Anaesthesia
- Interventional Pain Medicine
Anatomy: Neck

The larynx blends inferiorly with the trachea at which of the following vertebral levels:

a. C3
b. C4
c. C5
d. C6
e. C7

< Previous Next See Answer Something wrong? >

Question Navigator

1 Answered
2 Answered
3 Answered
4 Answered
5 Answered
6 Answered
7 Answered
8 Answered
9 Answered
10 Answered
11 Answered
12 Answered

Clear Exam
Anatomy: Neck

The larynx blends inferiorly with the trachea at which of the following vertebral levels:

- C3
- C4
- C5
- C6
- C7

Answer

The larynx is suspended from the superior laryngeal nerve and attached to the trachea below by innervation and ligaments. It lies above the thoracic vertebrae immediately posterior and slightly inferior to the tongue and the cricopharyngeal folds of the oral cavity, and blends inferiorly with the trachea at the vertebral level C5.

Notes

The larynx is suspended from the superior laryngeal nerve and attached to the trachea below by innervation and ligaments. It lies above the thoracic vertebrae immediately posterior and slightly inferior to the tongue and the cricopharyngeal folds of the oral cavity, and blends inferiorly with the trachea at the vertebral level C5.

Function

There are two principal roles of the larynx:

- Phonation
- Sphincteric to close the lower respiratory tract (for example during swallowing)
- Coupling
- Breath holding while straining (vocal cord adduction)

Laryngeal muscles

The laryngeal muscles are divided into intrinsic and extrinsic groups.

The intrinsic muscles alter the size and shape of the laryngeal inlet and move the vocal folds.

The extrinsic muscles are involved in elevation and depression of the larynx to produce swallowing.

Innervation

Motor and sensory innervation of the larynx is provided by the vagus nerve via its superior laryngeal and recurrent laryngeal branches.

The recurrent laryngeal nerves are sensory to the laryngeal cavity below the level of the vocal folds and motor to all intrinsic muscles of the larynx except for the cricothyroid muscle (innervated by the superior laryngeal branch of the vagus nerve).

A lesion of the recurrent laryngeal nerve may cause respiratory obstruction, hoarseness, inability to speak and loss of sensation below the vocal cord.

The superior laryngeal nerve supplies sensation to the mucous membranes above the vocal cord and the taste buds on the epiglottis, and motor innervation to the cricothyroid and the inferior pharyngeal constrictor muscles.

A lesion of the superior laryngeal nerve may cause loss of sensation above the vocal cord and taste on the epiglottis, and a weak hoarse voice.

By Oli Romeuillo (BilliJA; Oren, commons; Oren) [CC BY-SA 2.5-2.0-1.0], via Wikimedia Commons
Anatomy: Neck

Question 21 of 78

Regarding the subclavian artery, which of the following statement is INCORRECT:

a. The right subclavian artery begins posterior to the sternoclavicular joint.
b. The left and right subclavian arteries are direct branches of the arch of the aorta.
c. The subclavian artery passes anterior to the extension of the pleural cavity in the root of the neck.
d. The subclavian artery passes posterior to the scalenus anterior muscle.
e. The subclavian artery becomes the axillary artery as it crosses the lateral border of rib 1.

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 23 of 70

Regarding the subclavian artery, which of the following statement is INCORRECT?

a) The right subclavian artery begins posterior to the sternocleidomastoid muscle.

b) The left and right subclavians arteries are direct branches of the arch of the aorta.

c) The subclavian artery passes anterior to the vertebral column in the costal cavity in the root of the neck.

d) The subclavian artery passes posterior to the scalene anterior muscles.

e) The subclavian artery becomes the axillary artery as it crosses the lateral border of rib 1.

Answer

The right subclavian artery begins posterior to the sternocleidomastoid as a branch of the brachiocephalic trunk. The left subclavian artery begins more anteriorly as an indirect branch of the arch of the aorta and ascends posterior to the left common carotid artery.

Notes

The subclavian arteries on both sides arch upward out of the thorax to enter the root of the neck.

The right subclavian artery begins posterior to the sternocleidomastoid as a branch of the brachiocephalic trunk.

The left subclavian artery begins more anteriorly as an indirect branch of the arch of the aorta and ascends posterior to the left common carotid artery.

Each subclavian artery arches superiority and finally to pass anterior to the vertebrae of the spinal cavity in the root of the neck and posterior to the anterior scalene muscles, becoming the axillary artery as it crosses the lateral border of rib 1.
Anatomy: Neck

Question 22 of 78

The sternocleidomastoid muscle is primarily innervated by which of the following nerves:

a. Long thoracic nerve
b. Accessory nerve (CN XI)
c. Thoracodorsal nerve
d. Transverse cervical nerve
e. Lesser occipital nerve

< Previous Next > See Answer Something wrong?

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam
Anatomy: Neck
Question 22 of 79

The sternocleidomastoid muscle is primarily innervated by which of the following nerves:

a) Long thoracic nerve
X b) Accessory nerve (CN XI)
✓ c) Thoracodorsal nerve
d) Transverse cervical nerve
e) Lesser occipital nerve

Answer

The sternocleidomastoid is innervated by the accessory nerve (CN XI) and by branches of anterior rami of C2 – C3.

Notes

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Sternocleidomastoid</th>
</tr>
</thead>
</table>
| Origin | Sternal head: anterior manubrium of sternum
Clavicular head: medial one-third of clavicle |
| Insertion | Sternal head: lateral one-half of superior nuchal line
Clavicular head: lateral mastoid process |
| Innervation| Accessory nerve (and by branches of anterior rami of C2 – C3) |
| Action | Acting unilaterally: lateral rotation of head towards same side and rotation of head towards opposite side
Acting bilaterally: dorsal extension of head |

The sternocleidomastoid muscle has two heads; the sternal head originates from the upper part of the anterior manubrium of the sternum and inserts onto the lateral one-half of the superior nuchal line (occipital bone) and the clavicular head originates from the superior surface of the medial one-third of the clavicle and inserts onto the lateral surface of the mastoid process (temporal bone).

The sternocleidomastoid is innervated by the accessory nerve (CN XI) and by branches of anterior rami of C2 – C3.

Individually each muscle will tilt the head towards the shoulder on the same side (lateral flexion) and rotate the head to turn to face the opposite side. Acting together the muscles can draw the head forward, through extension of the neck at the atlanto-occipital joints (dorsal extension).

By Henry Vandyke Carter (Public domain), via Wikimedia Commons
Anatomy: Neck

A 23 year old man is involved in a road traffic collision and sustains a lumbar fracture. On examination you note he is unable to extend his big toe. Which of the following spinal nerve roots has most likely been affected:

a) L3
b) L4
c) L5
d) S1
e) S2

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Questions

1. A 23-year-old man involved in a road traffic collision and sustains a binaural fracture.
 - On examination you notice he is unable to extend his big toe. Which of the following spinal nerve roots has most likely been affected?
 - **A** T10
 - **B** L1
 - **C** T11
 - **D** T12

Answer

The L1 nerve root has most likely been affected.

Notes

Upper Limb

<table>
<thead>
<tr>
<th>Muscles</th>
<th>Movement most strongly associated with symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5</td>
<td>Shoulder abduction</td>
</tr>
<tr>
<td>C6</td>
<td>Elbow flexion/neck flexion</td>
</tr>
<tr>
<td>C7</td>
<td>Elbow extension/neck flexion</td>
</tr>
<tr>
<td>C8</td>
<td>Finger flexion</td>
</tr>
<tr>
<td>T1</td>
<td>Finger abduction</td>
</tr>
</tbody>
</table>

Lower Limb

<table>
<thead>
<tr>
<th>Muscles</th>
<th>Movement most strongly associated with symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>Hip flexion</td>
</tr>
<tr>
<td>L3</td>
<td>Knee extension</td>
</tr>
<tr>
<td>L4</td>
<td>Ankle dorsiflex</td>
</tr>
<tr>
<td>L5</td>
<td>Great toe extension</td>
</tr>
<tr>
<td>S1</td>
<td>Ankle plantarflex</td>
</tr>
<tr>
<td>S2</td>
<td>Knee flexion</td>
</tr>
</tbody>
</table>

Reflexes

<table>
<thead>
<tr>
<th>Reflex</th>
<th>Nerve root(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilatera</td>
<td>T12</td>
</tr>
<tr>
<td>Suprades</td>
<td>T12</td>
</tr>
<tr>
<td>Tricipis</td>
<td>C6 – C7</td>
</tr>
<tr>
<td>Parabola</td>
<td>L3 – L4</td>
</tr>
<tr>
<td>Ankle</td>
<td>S1 – S2</td>
</tr>
</tbody>
</table>

Resources

- The Royal College of Emergency Medicine
- UK Association for Emergency Medicine
- National Trauma Informed Care
- National Trauma Audit
- AdvisorUK
- PA Support Group
- Anesthesia
- Psychological
- smashing.png
Anatomy: Neck

A 21 year old presents to ED with a headache and neck stiffness. You are asked to perform a lumbar puncture. After penetrating the skin and subcutaneous tissue, what is the next layer that is penetrated:

- a) Interspinous ligament
- b) Supraspinous ligament
- c) Posterior longitudinal ligament
- d) Ligamentum flavum
- e) Dura mater

< Previous Next > See Answer Something wrong?

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam
Anatomy: Neck

A 21 year old presents to ED with a headache and neck stiffness. You are asked to perform a lumbar puncture. After penetrating the skin and subcutaneous tissue, what is the next layer that is penetrated?

- Interspinous ligament
- Supraspinous ligament
- Posterior longitudinal ligament
- Ligamentum flavum
- Dura mater

Answer

When performing a lumbar puncture, the needle passes between adjacent vertebral spinous processes, through the supraspinous and interspinous ligaments and through the ligamentum flavum to enter the extradural space. The needle then continues through the dura and the arachnoid mater to enter the subarachnoid space.

Notes

The vertebral canal extends from the first cervical vertebra (C1) to the last sacral vertebra (S1). Superiorly, the vertebral canal is continuous through the foramen magnum of the skull, with the cranial cavity.

The vertebral canals are bordered anteriorly by the vertebral bodies, intervertebral discs and the posterior longitudinal ligament, laterally by the vertebral pedicles and posteriorly by the vertebral laminae.

The vertebral canal contains the spinal cord and its protective membranes, together with blood vessels, connective tissue, fat and spinal nerve roots. The cross-medial line is the point below which the canal contains only the dura mater and its fibrous terminals.

Summaries

The spinal cord is surrounded by a series of three spinal membranes consisting of a dura, arachnoid and pia mater.

The bony walls of the spinal canal are separated from the meninges by the epidural (extradural) space.

The subarachnoid space, containing CSF, is located between the arachnoid and pia mater. The subarachnoid space around the spinal cord is continuous at the foramen magnum with the subarachnoid space surrounding the brain.

Lumbar puncture

In adults, the spinal cord typically ends between LS1-LS2 whereas the subarachnoid space extends approximately to the lower border of vertebra S2. As a result, the CSF can be withdrawn from the subarachnoid space in the lower lumbar region without endangering the spinal cord.

When performing a lumbar puncture, the needle passes between adjacent vertebral spinous processes, through the supraspinous and interspinous ligaments and through the ligamentum flavum to enter the extradural space. The needle then continues through the dura and the arachnoid mater to enter the subarachnoid space.

Layers penetrated during lumbar puncture:

- Skin
- Superficial fascia
- Supraspinous ligament
- Interspinous ligament
- Ligamentum flavum (first ‘pivot’)
- Extra-dural space
- Dura mater (second ‘pivot’)
- Subarachnoid space
- Arachnoid mater
- Subarachnoid space (containing CSF)
Anatomy: Neck

The spinal cord is continuous superiorly with the:

a. Midbrain
b. Thalamus
c. Pons
d. Medulla oblongata
e. Corpus callosum

< Previous Next > See Answer

Question Navigator

1 Answered
2 Answered
3 Answered
4 Answered
5 Answered
6 Answered
7 Answered
8 Answered
9 Answered
10 Answered
11 Answered
12 Answered

Clear Exam
Anatomy: Neck

The spinal cord is continuous superiorly with:
- Medulla
- Brainstem
- Medullary collaterals
- Corpus callosum

Answer

The spinal cord continues caudally as a continuation of the medulla oblongata at the foramen magnum. It then travels laterally within the vertebral canal, surrounded by the spinal membranes, before terminating at an anterior median fissure. The two lateral aspects are connected by a flatter lateral fissure that continues from the medulla oblongata in the dorsal sac, from which the spinal nerves arise and descend through the subarachnoid space to enter their respective intervertebral or sacral foramina and are bundled together forming the cauda equina.

Spinal cord enlargements

During the course of the spinal cord, there are three areas of enlargement:
- The cervical enlargement is located at C5–C6 level and represents the exit of the spinal nerves.
- The thoracic enlargement is located at T7–T9 level and represents the exit of the thoracic spinal nerves.

Spinal nerve roots

The spinal nerves emerge from the spinal cord through the intervertebral foramina and are made up of posterior and anterior roots. Anterior roots branch into motor roots (ventral) and sensory roots (dorsal). Posterior roots branch into sensory roots (dorsal) and motor roots (ventral). The posterior roots then join the anterior roots to form the spinal nerves. The spinal nerves then emerge from the vertebrae through the intervertebral foramina and continue their journey through the spinal column to reach their final destination.

Internal position

The cervical spinal cord is in a small bony canal called the vertebral canal. Its diameter is larger than the spinal cord, and the posterior aspect is flattened. The spinal cord is protected by the vertebral column, and its size and shape vary throughout the vertebrae to accommodate the spinal cord. The spinal cord is divided into cervical, thoracic, lumbar, and sacral regions. The cervical spinal cord is located in the cervical vertebrae, which are shorter and wider than the thoracic vertebrae.

Spinal cord ventral surface

The spinal cord's ventral surface is covered by the posterior and anterior roots. The posterior roots are located in the intervertebral foramina, and the anterior roots are located in the vertebral canal. The posterior roots are larger than the anterior roots, and they give off branches to the muscles and skin. The anterior roots are smaller and give off branches to the muscles and skin. The posterior roots also give off branches to the spinal nerves, which supply the muscles and skin of the posterior body wall.
Anatomy: Neck

Question 26 of 78

The scalenus anterior muscle acts to produce which of the following movements:

- a. Lateral flexion of the neck
- b. Extension of the neck
- c. Elevation of the shoulders
- d. Depression of the shoulders
- e. Elevation of rib I

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 26 of 78

The scalenus anterior muscle acts to produce which of the following movements:

a) Lateral flexion of the neck
 b) Extension of the neck
 c) Elevation of the shoulders
 d) Depression of the shoulders
 e) Elevation of rib 1

Answer

The scalenus anterior is a synergistic stabiliser of the neck and acts together with the other scalene muscles to elevate rib 1.

Notes

The scalenus anterior is a synergistic stabiliser of the neck and acts together with the other scalene muscles to elevate rib 1.

It originates from the anterior tubercles of the transverse processes of vertebrae C3 – C6 and inserts onto the scalene tubercle and upper surface of rib 1.

It is innervated by the anterior rami of C4 – C7.

By User: Mikael Häggström [Image:Gray387.png] (Public domain, Public domain or Public domain, via Wikimedia Commons)
Anatomy: Neck

The anaesthetist is attempting to intubate an unconscious patient who is unable to maintain their airway. The anaesthetist finds himself in a ‘can’t intubate, can’t ventilate’ situation and proceeds to perform an emergency tracheotomy. Which of the following structures are most likely damaged in this procedure:

- **a** Middle and inferior thyroid veins
- **b** Inferior thyroid vein and thyroidea ima artery
- **c** Middle and superior thyroid veins
- **d** Inferior thyroid vein and artery
- **e** Cricothyroid artery and inferior thyroid vein

< Previous Next > See Answer

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Something wrong?

Clear Exam
Anatomy: Neck

The anesthetist is attempting to intubate an unconscious patient who is unable to maintain their airways. The anesthetist finds himself in a ‘can’t intubate, can’t ventilate’ situation and proceeds to perform an emergency tracheostomy. Which of the following structures are most likely damaged in this procedure:

- a) Middle and inferior thyroid veins
- b) Inferior thyroid vein and thyroidea ima artery
- c) Middle and superior thyroid veins
- d) Inferior thyroid vein and artery
- e) Cricothyroid artery and inferior thyroid vein

Answer

Structures particularly vulnerable in tracheostomy include the isthmus of the thyroid, the jugular arch connecting the anterior jugular veins, the inferior thyroid vein, the left brachio-ophthalmic vein, the thyroidea ima artery, and the recurrent laryngeal nerve (less commonly).

Notes

The trachea begins at vertebro-laryngeal Ca, where it is continuous with the larynx above. The trachea lies directly anterior to the oesophagus and travels inferiorly to pass through the thoracic inlet.

Cricothyroidotomy

A cricothyroidotomy is performed to provide a temporary emergency airway in situations where there is obstruction at or above the level of the larynx, such as nasal/oral endotracheal intubation is impossible e.g. as a result of inflation of a foreign body, severe oedema secondary to anaesthetic reaction, or severe head and neck trauma.

Compared with an emergency tracheostomy, it is quicker and easier to perform and associated with fewer complications. It involves making an opening in the median cricothyroid ligament (the medial part of the cricothyroid ligament), between the cricoarytenoid cartilages of the larynx. The ligament can be palpated in the midline and usually there are only small blood vessels, connective tissue and skin overlying it.

Tracheostomy

At a lower level, the airway can be accessed surgically (or percutaneously) through the anterior wall of the trachea by tracheostomy. Tracheostomy is usually performed in non-emergency situations.

A small transverse incision is placed in the lower third of the neck anteriorly. The strap (thyro-hyoid) muscles are deviated laterally and the trachea can be easily visualised. Occasionally it is necessary to divide the isthmus of the thyroid. An incision is typically made between the second and third or the third and fourth tracheal rings and a small tracheostomy tube inserted.

This route of entry is complicated because large veins and part of the thyroid gland overlie this region. Structures particularly vulnerable include the isthmus of the thyroid, the jugular arch connecting the anterior jugular veins, the inferior thyroid vein, the left brachio-ophthalmic vein, the thyroidea ima artery, and the recurrent laryngeal nerve (less commonly).
Anatomy: Neck

Question 28 of 78

The scalenus anterior muscle inserts onto which of the following structures:

- a. Medial clavicle
- b. Lateral clavicle
- c. First rib
- d. Manubrium of the sternum
- e. Coracoid process

< Previous Next > See Answer

Something wrong?

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam

FRCEM Success

We are an online revision resource for FRCEM Primary and Intermediate exam preparation.

Terms & Conditions
Get in Touch

Resources

- The Royal College of Emergency Medicine
- Irish Association for Emergency Medicine
- Advanced Trauma Life Support
- Resuscitation Council (UK)
- TeachMeAnatomy
- Trauma.org
- Radiopaedia

Advanced Life Support Group
Emergency Medicine Journal
Lifeinthefastlane
Instant Anatomy
Patient.co.uk
Anatomy: Neck

Question 28 of 78

The scalenus anterior muscle inserts onto which of the following structures:

- [] a) Medial clavicle
- [x] b) Lateral clavicle
- [] c) First rib
- [] d) Manubrium of the sternum
- [] e) Coracoid process

Answer

The scalenus anterior originates from the anterior tubercles of the transverse processes of vertebrae C3 - C6 and inserts onto the scalene tubercle and upper surface of rib I.

Notes

The scalenus anterior is a synergistic stabiliser of the neck and acts together with the other scalene muscles to elevate rib I.

It originates from the anterior tubercles of the transverse processes of vertebrae C3 – C6 and inserts onto the scalene tubercle and upper surface of rib I.

It is innervated by the anterior rami of C4 – C7.

By User: Mikael Hägström (Image:Gray387.png) [Public domain, Public domain or Public domain], via Wikimedia Commons
Anatomy: Neck

Question 29 of 78

Regarding the subclavian vein, which of the following statements is INCORRECT:

- The subclavian vein begins at the lateral margin of rib I.
- The subclavian vein is a continuation of the axillary vein.
- The subclavian vein is joined by the internal jugular vein to form the brachiocephalic vein just posterior to the anterior scalene muscle.
- Central venous cannulation may be performed in the internal jugular vein or subclavian vein.
- Subclavian vein cannulation carries a risk of pneumothorax.

< Previous Next > See Answer Something wrong?

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam

FRCEM Success

Resources

- The Royal College of Emergency Medicine
- Irish Association for Emergency Medicine
- Advanced Trauma Life Support
- Resuscitation Council (UK)
- TeachMeAnatomy
- Trauma.org
- Radiopaedia
- Advanced Life Support Group
- Emergency Medicine Journal
- Lifeinthefastlane
- Instant Anatomy
- Patient.co.uk

Terms & Conditions
Get in Touch

©2014 - 2017 FRCEM Success | Website designed & hosted by Cyberfrog Design
Anatomy: Neck

Question 29 of 78

Regarding the subclavian vein, which of the following statements is INCORRECT:

- a) The subclavian vein begins at the lateral margin of rib I.
- b) The subclavian vein is a continuation of the axillary vein.
- c) The subclavian vein is joined by the internal jugular vein to form the brachiocephalic vein just posterior to the anterior scalene muscle.
- d) Central venous cannulation may be performed in the internal jugular vein or subclavian vein.
- e) Subclavian vein cannulation carries a risk of pneumothorax.

Answer

The brachiocephalic vein is formed from the union of the subclavian and internal jugular vein just anterior to the anterior scalene muscle.

Notes

The subclavian veins begin at the lateral margin of rib I as continuations of the axillary veins. Passing medially on each side, just anterior to the anterior scalene muscles, each subclavian vein is joined by the internal jugular vein to form the brachiocephalic vein.

Central venous cannulation may be performed via the internal jugular vein or subclavian vein.

To gain subclavian access, the clavicle is identified and the needle placed in the infraclavicular region (in the midclavicular line or lateral to this line), aiming superomedially. As the subclavian vein passes inferiorly, posterior to the clavicle, it passes over the apex of the lung. Any misplacement of a needle into or through this structure may puncture the apical pleura, producing a pneumothorax. Inadvertent arterial puncture and vein laceration may also produce a haemothorax.

A puncture of the internal jugular vein carries fewer risks but local haematoma and damage to the carotid artery are important considerations.
Anatomy: Neck

Question 30 of 78

The stylopharyngeus muscle of the pharynx is innervated by which of the following nerves:

a) Facial nerve
b) Glossopharyngeal nerve
c) Vagus nerve
d) Hypoglossal nerve
e) Mandibular nerve

Previous Next See Answer

Clear Exam
Anatomy: Neck

The stylopharyngeus muscle of the pharynx is innervated by which of the following nerves:

- Facial nerve
- Glossopharyngeal nerve
- Vagus nerve
- Hypoglossal nerve
- Mandibular nerve

Answer

The muscles of the pharynx are all innervated by the vagus nerves except for the stylopharyngeus muscle, innervated by the glossopharyngeal nerve.

Notes

The pharynx is a mucosal-lined structure that connects the oral and nasal cavities in the head to the larynx and the esophagus in the neck.

The pharynx is attached above to the base of the skull, and is continuous below, approximately at the level of vertebra C6, with the top of the esophagus.

The pharynx is separated from the posterior vertebral column by a thin retropharyngeal space, bordered anteriorly by the buccopharyngeal fascia and posteriorly by the prevertebral fascia.

Arrangement

The walls of the pharynx are attached anteriorly to the margins of the nasal cavities, oral cavity and larynx, dividing the pharynx into the nasopharynx, oropharynx and laryngopharynx respectively.

The posterior apertures of the nasal cavities open into the nasopharynx, the oropharyngeal sinuses open into the oropharynx and the superior aperture of the larynx opens into the laryngopharynx.

The pharyngotonsillar tubules (from the middle ear) open into the lateral walls of the nasopharynx.

Muscles

The muscles of the pharyngeal wall are organized into two groups.

The three sheath-constrictor muscles constict the pharyngeal cavity sequentially to move a bolus of food through the pharynx and into the esophagus during swallowing.

The three longitudinal muscles elevate the pharyngeal wall, or during swallowing, pull the pharyngeal wall up and over a bolus of food being moved through the pharynx into the esophagus.

Nerve supply

The muscles of the pharynx are all innervated by the vagus nerve except for the stylopharyngeus muscle, innervated by the glossopharyngeal nerve. The branches of the vagus and glossopharyngeal nerves form a pharyngeal plexus in the outer fascia of the pharyngeal wall.

Each subdivision of the pharynx has a different sensory innervation:

- the nasopharynx is innervated by the maxillary nerve
- the oropharynx is innervated by the glossopharyngeal nerve
- the laryngopharynx is innervated by the vagus nerve.

Lymphatics

Lymphatic vessels from the pharynx drain into the deep cervical lymph nodes.
Anatomy: Neck

Question 31 of 78

The jugulodigastric lymph node receives lymph drainage primarily from which of the following territories:

a. Tongue
b. Tonsils
c. Lower teeth
d. Upper teeth
e. Nasopharynx

< Previous Next > See Answer Something wrong?

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam
Anatomy: Neck

Question 31 of 78

The jugulodigastric lymph node receives lymph drainage primarily from which of the following territories:

a) Tongue
X b) Tonsils
 c) Lower teeth
 d) Upper teeth
e) Nasopharynx

Answer

The jugulodigastric node receives lymphatic drainage from the tonsils and tonsillar region.

Notes

The deep cervical nodes form a chain along the internal jugular vein and are divided into upper and lower groups.

The most superior node in the upper group (lying where the posterior belly of the digastric muscle crosses the internal jugular vein) is the jugulodigastric node which receives lymphatic drainage from the tonsils and tonsillar region.

The most superior node in the lower group (lying just inferior to the intermediate tendon of the omohyoid muscle) is the jugulo-omohyoid node which receives lymphatic drainage from the tongue.

By Henry Vandyke Carter (Public domain), via Wikimedia Commons
Anatomy: Neck

The cricoid cartilage articulates with which of the following structures:

- a) Arytenoid and corniculate cartilages
- b) Thyroid cartilage and epiglottis
- c) Arytenoid and thyroid cartilages
- d) Corniculate and cuneiform cartilages
- e) Thyroid cartilage and hyoid bone

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 33 of 78

Regarding the cervical vertebrae, which of the following statements is INCORRECT:

- **a** The atlas is distinguished by its lack of vertebral body.
- **b** The atlas articulates with the occipital condyles of the skull superiorly.
- **c** The dens of the axis articulates with the posterior arch of the atlas.
- **d** The axis has a bifid spinous process.
- **e** The atlantoaxial joints allow the head to rotate from side to side.

< Previous | Next > | See Answer | Something wrong? >
Anatomy: Neck

Question 2 of 78

Regarding the cervical vertebrae, which of the following statements is INCORRECT?

a) The atlas is distinguished by its lack of vertebral body. ✗
b) The atlas articulates with the occipital condyles of the skull superiorly.
c) The dens of the axis articulates with the posterior arch of the atlas. ✓
d) The axis has a bifid spinous process.
e) The atlantoaxial joints allow the head to rotate from side to side.

Answer

The dens of the axis extends superiorly from its vertebral body to articulate with the anterior arch of the atlas.

Notes

Vertebrae C1 (the atlas) is distinguished by its lack of vertebral body, essentially being composed of two lateral masses interconnected by an anterior and posterior arch. Each lateral mass articulates above with an occipital condyle of the skull and below with the superior articular facet of vertebra C2 (the axis). The posterior surface of the anterior arch has an articular facet for the dens of the axis.

The axis is characterised by the large dens, which extends superiorly from its vertebral body to articulate with the posterior arch of the atlas, and by its bifid spinous process. The dens is held in position by the strong transverse ligament of atlas posterior to it and spanning the distance between the lateral masses of the atlas.

The atlanto-occipital joints allow the head to nod up and down on the vertebral column.

The atlanto-axial joints allow the head to rotate from side to side.
Anatomy: Neck

A 74 year old man presents with a three month history of worsening left shoulder and arm pain. On examination there is weakness of shoulder abduction and reduced sensation over the deltoid. You suspect cervical radiculopathy. What level of the cervical spine is most likely to be affected:

- a) C1
- b) C3
- c) C5
- d) C7
- e) C8
Anatomy: Neck

Question 1 of 4

A 74-year-old man presents with a three-month history of weakness of left shoulder and arm. On examination there is weakness of shoulder abduction and reduced sensation over the deltoid. The suspect cervical radiculopathy. What level of the cervical spine is most likely to be affected?

Answer

The C5 nerve root is most likely affected.

Notes

Upper Limb

Muscle movement

Nerve root(s)

Shoulder abduction

C5

Shoulder abduction

C5 – C7

Elbow flexion

C5 – C6

Elbow extension (anterior)

C7

Wrist flexion

C7 – C8

Wrist extension

C6 – C7

Finger flexion

C8

Finger extension

C7

Finger abduction

T1

Lower Limb

Muscle movement

Nerve root(s)

Hip flexion

L1 – L2

Hip abduction

L2 – L3

Hip extension

L3 – L4

Knee flexion

L3 – S2

Knee extension

L3 – L4

Achilles tendon

L4

Achilles plantarflexor

S1 – S2

Great toe extension

L5

References

Resources

- American College of Emergency Physicians
- American Thoracic Society
- National Institutes of Health
- American Academy of Orthopaedic Surgeons
- National Spinal Injuries Centre
- AO Foundation
- World Confederation for Physical Therapy
Anatomy: Neck

The muscles of the pharynx (other than the stylopharyngeus) are all innervated by which of the following nerves:

- a) Facial nerve
- b) Glossopharyngeal nerve
- c) Vagus nerve
- d) Hypoglossal nerve
- e) Mandibular nerve
Anatomy: Neck

Details: 3/5

The muscles of the pharynx (other than the stylopharyngeus) are all innervated by which of the following nerves:

- a) Glossopharyngeal nerve
- b) Vagus nerve
- c) Hypoglossal nerve
- d) Mandibular nerve

Answer

The muscles of the pharynx are all innervated by the vagus nerve except for the stylopharyngeus muscle, innervated by the glossopharyngeal nerve.

Notes

The pharynx is a mucosa-lined (sic) structure that connects the oral and nasal cavities in the head to the larynx and the esophagus in the neck.

The pharynx is attached above to the base of the skull, and is continuous below, approximately at the level of vertebra C6, with the top of the esophagus.

The pharynx is separated from the posterior vertebral column by a thin retropharyngeal space, bordered anteriorly by the prevertebral fascia and posteriorly by the prevertebral fascia.

Arrangement

The walls of the pharynx are attached anteriorly to the margins of the nasal cavities, oral cavity and larynx, dividing the pharynx into the nasopharynx, oropharynx, and hypopharynx respectively.

The posterior apertures of the nasal cavities open into the nasopharynx, the oropharyngeal isthmus opens into the oropharynx and the superior aperture of the larynx opens into the laryngopharynx.

The pharyngotympanic tubes (from the middle ear) open into the lateral walls of the nasopharynx.

By OpenStax College (CC BY 3.0), via Wikimedia Commons.

Muscles

The muscles of the pharyngeal wall are organized into two groups.

The three sheet-like constrictor muscles constitute the pharyngeal cavity sequentially to move a bolus of food through the pharynx and into the esophagus during swallowing.

The three longitudinal muscles elevate the pharyngeal wall, or during swallowing, pull the pharyngeal wall up and over a bolus of food being moved through the pharynx into the esophagus.

Nerve supply:

The muscles of the pharynx are all innervated by the vagus nerve except for the stylopharyngeus muscle, innervated by the glossopharyngeal nerve. The branches of the vagus and glossopharyngeal nerves form a pharyngeal plexus in the outer fascia of the pharyngeal wall.

Each subdivision of the pharynx has a different sensory innervation:

- the nasopharynx is innervated by the maxillary nerve
- the oropharynx is innervated by the glossopharyngeal nerve
- the laryngopharynx is innervated by the vagus nerve.

Lymphatics

Lymphatic vessels from the pharynx drain into the deep cervical lymph nodes.
Anatomy: Neck

Question 36 of 78

A 29 year old male presents to ED with a penetrating injury to the neck. You suspect injury to the right sternocleidomastoid muscle. How would you best assess function of this muscle:

- **a** Ask patient to shrug shoulder against resistance
- **b** Ask patient to flex head against resistance
- **c** Ask patient to extend head against resistance
- **d** Ask patient to rotate head against resistance
- **e** Ask patient to abduct shoulder against resistance

< Previous Next > See Answer Something wrong?

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam
Anatomy: Neck

A 29 year old male presents to ED with a penetrating injury to the neck. You suspect injury to the right sternocleidomastoid muscle. How would you best assess function of this muscle:

- a) Ask patient to shrug shoulder against resistance ✗
- b) Ask patient to flex head against resistance
- c) Ask patient to extend head against resistance
- d) Ask patient to rotate head against resistance ✓
- e) Ask patient to abduct shoulder against resistance

Answer

The sternocleidomastoid muscle is best assessed by testing rotation of head against resistance. The right sternocleidomastoid muscle acts to rotate the head towards the left and vice versa.

Notes

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Sternocleidomastoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Sternal head: anterior manubrium of sternum</td>
</tr>
<tr>
<td></td>
<td>Clavicular head: medial one-third of clavicle</td>
</tr>
<tr>
<td>Insertion</td>
<td>Sternal head: lateral one-half of superior nuchal line</td>
</tr>
<tr>
<td></td>
<td>Clavicular head: lateral mastoid process</td>
</tr>
<tr>
<td>Innervation</td>
<td>Accessory nerve (and by branches of anterior rami of C2 – C3)</td>
</tr>
<tr>
<td>Action</td>
<td>Acting unilaterally: lateral rotation of head towards same side and rotation of head towards opposite side</td>
</tr>
<tr>
<td></td>
<td>Acting bilaterally: dorsal extension of head</td>
</tr>
</tbody>
</table>

The sternocleidomastoid muscle has two heads; the sternal head originates from the upper part of the anterior manubrium of the sternum and inserts onto the lateral one-half of the superior nuchal line (occipital bone) and the clavicular head originates from the superior surface of the medial one-third of the clavicle and inserts onto the lateral surface of the mastoid process (temporal bone).

The sternocleidomastoid is innervated by the accessory nerve (CN XI) and by branches of anterior rami of C2 – C3.

Individually each muscle will lift the head towards the shoulder on the same side (lateral flexion) and rotate the head to turn to face the opposite side. Acting together the muscles draw the head forward, through extension of the neck at the atlanto-occipital joints (dorsal extension).
Anatomy: Neck

Question 37 of 78

The two heads of the sternocleidomastoid muscle originate from which of the following structures:

- Coracoid process and medial one-third of the clavicle
- Medial clavicle and the xiphoid process of the sternum
- Medial one-third of the clavicle and the manubrium of the sternum
- Lateral one-half of the clavicle and the manubrium of the sternum
- Lateral clavicle and spine of the scapula

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 37 of 78

The two heads of the sternocleidomastoid muscle originate from which of the following structures:

a) Carotid process and medial one-third of the clavicle
 [x]
b) Clavicular and the axillofemoral process of the sternum
c) Medial one-third of the clavicle and the manubrium of the sternum
 [x]
d) Lateral one-half of the clavicle and the manubrium of the sternum
e) Lateral clavicle and spine of the scapula

Answer

The sternocleidomastoid muscle has two heads: the sternal head originates from the upper part of the anterior manubrium of the sternum and inserts onto the lateral one-half of the superior nuchal line (occipital bone) and the clavicular head originates from the superior surface of the medial one-third of the clavicle and inserts onto the lateral surface of the mastoid process (temporal bone).

Notes

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Sternoclidomastoid</th>
</tr>
</thead>
</table>
| Origin | Sternum: anterior manubrium of sternum
 | Clavicle: medial one-third of clavicle |
| Insertion | Sternum: lateral one-half of superior nuchal line
 | Clavicle: lateral mastoid process |
| Innervation | Accessory nerve (and by branches of anterior rami of C2 – C3) |
| Action | Acting unilaterally: lateral rotation of head towards same side and rotation of head towards opposite side
 | Acting bilaterally: dorsal extension of head |

The sternocleidomastoid muscle has two heads: the sternal head originates from the upper part of the anterior manubrium of the sternum and inserts onto the lateral one-half of the superior nuchal line (occipital bone) and the clavicular head originates from the superior surface of the medial one-third of the clavicle and inserts onto the lateral surface of the mastoid process (temporal bone).

The sternocleidomastoid is innervated by the accessory nerve (CN XI) and by branches of anterior rami of C2 – C3.

Individually each muscle will tilt the head towards the shoulder on the same side (lateral flexion) and rotate the head to turn to face the opposite side. Acting together the muscles draw the head forward, through extension of the neck at the atlanto-occipital joints (dorsal extension).
Anatomy: Neck

Question 38 of 78

Regarding the musculature of the vertebral column, which of the following statements is INCORRECT:

- **a** Rotation of the vertebral column occurs mainly in the thoracic region.
- **b** Intrinsic back muscles are innervated by the anterior rami of spinal nerves.
- **c** The erector spinae is the largest group of intrinsic back muscles.
- **d** Flexion of the vertebral column is produced predominantly by the rectus abdominis muscle.
- **e** Acting unilaterally, the erector spinae muscles act to produce lateral flexion of the vertebral column.

< Previous Next > See Answer Something wrong? Clear Exam
Anatomy: Neck

Question 58 of 70

Regarding the musculature of the vertebral column, which of the following statements is INCORRECT:

a) Rotation of the vertebral column occurs mainly in the thoracic region.
X
b) Intrinsics back muscles are innervated by the anterior rami of spinal nerves.

✓
c) The erector spinae is the largest group of intrinsic back muscles.

d) Flexion of the vertebral column is produced predominantly by the rectus abdominis muscle.

e) Acting unilaterally, the erector spinae muscles act to produce lateral flexion of the vertebral column.

Answer

The deep muscles of the back are classified as intrinsic back muscles and innervated by the posterior rami of spinal nerves.

Notes

Movements by the vertebral column include flexion, extension, lateral flexion and rotation. Rotation occurs predominantly in the thoracic column.

Muscles of the back are organised into superficial, intermediate and deep groups.

- **Extrinsic muscles** (innervated by anterior rami of spinal nerves)
 - The superficial group consists of muscles related to and involved with movements in the upper limb.
 - The intermediate group consists of muscles attached to the ribs and involved in respiratory function.
 - The deep group consists of muscles directly related to movements of the vertebral column and head.

The deep muscles of the back include:

- the splenius capitis and cervicis (extensors and rotators of the head and neck)
- the erector spinae and transversospinalis (extensors and rotators of the vertebral column)
- the short segmental muscles.

The erector spinae (highlighted red) is the largest group of intrinsic back muscles, lying posteriorly to the vertebral columns between the spinous processes medially and the angles of the ribs laterally. The muscles in the erector spinae group are the primary extensors of the vertebral column and head. Acting bilaterally, they straighten the back, returning it to the upright position from the flexed position, and pull the head posteriorly. Acting unilaterally, they bend the vertebral column laterally.

Flexion of the vertebral column is provided predominantly by the rectus abdominis muscle assisted for rotation by the obliques.
Anatomy: Neck

A 31 year old male presents to ED with a penetrating wound to the neck. Imaging shows damage to the structure which run along the course of the anterior scalenus muscle. Which of the following structures is most likely affected:

- Maxillary artery
- Subclavian artery
- Recurrent laryngeal nerve
- Phrenic nerve
- Brachial plexus

< Previous Next > See Answer Something wrong?

©2014 - 2017 FRCEM Success | Website designed & hosted by Cyberfrog Design
Anatomy: Neck

Question 39 of 78

A 31 year old male presents to ED with a penetrating wound to the neck. Imaging shows damage to the structure which run along the course of the anterior scalenus muscle. Which of the following structures is most likely affected:

a) **M*Millary artery**

b) Subclavian artery

c) Recurrent laryngeal nerve

d) Phrenic nerve

e) Brachial plexus

Answer

Passing around the upper lateral border of each anterior scalene muscle, the phrénic nerves continue inferiorly across the anterior surface of the anterior scalene muscle within the prevertebral fascia.

Notes

The phrenic nerves are branches of the cervical plexus, arising on each side as contributions from the anterior rami of C3 - C5 come together.

Passing around the upper lateral border of each anterior scalene muscle, the phrenic nerves continue inferiorly across the anterior surface of the anterior scalene muscle within the prevertebral fascia.

Leaving the lower edge of the anterior scalene muscle, each phrenic nerve passes between the subclavian vein and arterial to enter the thorax to continue to the diaphragm.

Modified by FRCEM Success. Original by Henry Vandyke Carter [Public domain], via Wikimedia Commons.
Anatomy: Neck

A 20 year old factory worker sustains a crush injury to her vertebral column whilst at work. Imaging shows swelling of the spinal cord. Which of the following structures will be trapped between the dura and the vertebral column:

a. Anterior longitudinal ligament
b. Posterior longitudinal ligament
c. Ligamentum flava
d. Interspinous ligament
e. Supraspinous ligament

< Previous Next > See Answer Something wrong? Clear Exam

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

FRCEM Success

We are an online revision resource for FRCEM Primary and Intermediate exam preparation.

Terms & Conditions
Get in Touch

Resources

- The Royal College of Emergency Medicine
- Irish Association for Emergency Medicine
- Advanced Trauma Life Support
- Resuscitation Council (UK)
- TeachMeAnatomy
- Trauma.org
- Radiopaedia
- Advanced Life Support Group
- Emergency Medicine Journal
- Lifeinthefastlane
- Instant Anatomy
- Patient.co.uk

©2014 - 2017 FRCEM Success | Website designed & hosted by Cyberfrog Design
Anatomy: Neck

Question 6 of 7

A 20-year-old factory worker sustains a crush injury to her vertebral column while at work, imaging shows needle of the spinal cord. Which of the following structures will be trapped between the dura and the vertebral column.

- a) Anterior longitudinal ligament
- b) Posterior longitudinal ligament
- c) Intervertebral disc
- d) Laminar ligament

Correct Answer: b)

Answer

The posterior longitudinal ligament interconnects the vertebral bodies and intervertebral discs posteriorly and acts as a barrier to the spinal cord within the vertebral column.

Notes

Joints between vertebrae are reinforced by numerous ligaments.

<table>
<thead>
<tr>
<th>Ligament</th>
<th>Location</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior longitudinal ligament</td>
<td>Extends from base of skull to sacrum, attached along its length to vertebral bodies anteriorly</td>
<td>Limits extension of vertebral column, supports annulus fibrosus anteriorly, restricts gravitational pull</td>
</tr>
<tr>
<td>Posterior longitudinal ligament</td>
<td>Extends from C2 to sacrum, attached along its length to vertebral bodies posteriorly</td>
<td>Limits flexion of vertebral column, supports annulus fibrosus posteriorly, restricts gravitational pull</td>
</tr>
<tr>
<td>Ligamentum flavum</td>
<td>Passes between transverse processes of adjacent vertebrae</td>
<td>Restricts separation of laminae or flexion and assist in extension back to anatomical position</td>
</tr>
<tr>
<td>Supraspinous ligament</td>
<td>Passes between and connects tips of spinous processes, extending from C7 to sacrum</td>
<td>Limits flexion of vertebral column</td>
</tr>
<tr>
<td>Ligamentum nuchae</td>
<td>Passes between and connects tips of spinous processes, extending from C7 to spinous processes of C1</td>
<td>Supports head, restricts flexion of neck and helps return head to anatomical position</td>
</tr>
<tr>
<td>Intervertebral ligaments</td>
<td>Pass between spinous processes of adjacent vertebrae</td>
<td>Limits flexion of vertebral column</td>
</tr>
</tbody>
</table>

Laminar ligaments are strengthened by the insertion of bone, the vertebral bodies and intervertebral discs posteriorly. The anterior longitudinal ligament functions to support the anterior aspect of the vertebral bodies and the annulus fibrosus and limit flexion of the vertebral column. The ligamentum flavum, on each side, passes between the laminae of adjacent vertebrae, forming part of the posterior surface of the vertebral column. The Ligamentum flavum restricts retraction of the laminae to flex and assist in extension back to the anatomical position.

The supraspinous ligament connects and passes along the top of the vertebral spinous processes from vertebra C7 to the sacrum. From vertebra C7 to the skull, the ligament is more structurally distinct and referred to as the ligamentum nuchae. The ligamentum nuchae is attached superiority to the skull (from the external occipital protuberance to the transverse processes of C7) and inferiorly to the spinous processes of C1 and between these two points to the spinous processes of the vertebrae. The ligamentum nuchae supports the head, maintains flexion and helps to return the head to the anatomical position. The ligament provides attachment for adjacent muscles.

The interspinous ligaments connect adjacent vertebrae spinous processes and support posteriorly with the supraspinous ligament and anteriorly with the Ligamentum flavum on each side.

By Henry Vicarby Cush (Public domain), via Wikimedia Commons
Anatomy: Neck

Question 41 of 78

The scalenus anterior muscle originates from which of the following structures:

c. Mandible
d. Mastoid process
e. Hyoid bone

< Previous Next > See Answer Something wrong?

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam
Anatomy: Neck

Question 41 of 78

The scalenus anterior muscle originates from which of the following structures:

a) Spinous processes of vertebrae C4 – C7. ❌
b) Transverse processes of vertebrae C3 – C6. ✔
c) Mandible
d) Mastoid process
e) Hyoid bone

Answer

The scalenus anterior originates from the anterior tubercles of the transverse processes of vertebrae C3 – C6 and inserts onto the scalene tubercle and upper surface of rib I.

Notes

The scalenus anterior is a synergistic stabiliser of the neck and acts together with the other scalene muscles to elevate rib I.

It originates from the anterior tubercles of the transverse processes of vertebrae C3 – C6 and inserts onto the scalene tubercle and upper surface of rib I.

It is innervated by the anterior rami of C4 – C7.
Anatomy: Neck

In adults the spinal cord usually ends at which vertebral level:

a) T12/L1
b) L1/L2
c) L2/L3
d) L3/L4
e) L4/L5

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 42 of 78

In adults the spinal cord usually ends at which vertebral level:

- a) T12/L1
- b) L1/2
- c) L2/3
- d) L3/4
- e) L4/5

Answer

In adults, the spinal cord typically ends between L1/L2 whereas the subarachnoid space extends to approximately the lower border of vertebra S2.

Notes

The vertebral canal extends from the first cervical vertebra (C1) to the last sacral vertebra (S5). Superiorly the vertebral canal is continuous, through the foramen magnum of the skull, with the cranial cavity.

The vertebral canal is bounded anteriorly by the vertebral bodies, intervertebral discs and the posterior longitudinal ligament, laterally by the vertebral pedicles and posteriorly by the vertebral laminae.

The vertebral canal contains the spinal cord and its protective membranes, together with blood vessels, connective tissue, fat and spinal nerve roots. The conus medullaris is the point below which the canal contains only the cauda equina and filum terminale.

Meninges

The bony walls of the spinal canal are separated from the meninges by the epidural (intradural) space.

The subarachnoid space, containing CSF, is found between the arachnoid and pia mater. The subarachnoid space around the spinal cord is continuous at the foramen magnum with the subarachnoid space surrounding the brain.

Lumbar puncture

In adults, the spinal cord typically ends between L1/L2 whereas the subarachnoid space extends to approximately the lower border of vertebra S2. As a result of this, CSF can be withdrawn from the subarachnoid space in the lower lumbar region without endangering the spinal cord.

When performing a lumbar puncture, the needle passes between adjacent vertebral spinous processes, through the supraspinous and interspinous ligaments and through the ligamentum flavum to enter the extradural space. The needle then continues through the dura and the arachnoid mater to enter the subarachnoid space.

Layers penetrated during lumbar puncture:
- Skin
- Superficial fascia
- Supraspinous ligament
- Interspinous ligament
- Ligamentum flavum (first ‘give’)
- Extradural space
- Dura mater (second ‘give’)
- Subdural space
- Arachnoid mater
- Subarachnoid space (containing CSF)

Clear Exam
Anatomy: Neck

The sternocleidomastoid muscle inserts onto which of the following structures:

a. Mandible
b. Mastoid process and superior nuchal line
c. Temporomandibular joint
d. Hyoid bone
e. Zygomatic arch

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 40 of 78

The sternocleidomastoid muscle inserts onto which of the following structures:

- a) Mandible
- b) Mastoid process and superior nuchal line
- c) Temporomandibular joint
- d) Hyoid bone
- e) Spinal accessory

Answer

The sternocleidomastoid muscle has two heads: the sternal head originates from the upper part of the anterior manubrium of the sternum and inserts onto the lateral one-half of the superior nuchal line (occipital bone) and the clavicular head originates from the superior surface of the medial one-third of the clavicle and inserts onto the lateral surface of the mastoid process (temporal bone).

Notes

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Sternocleidomastoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Sternal head: anterior manubrium of sternum</td>
</tr>
<tr>
<td></td>
<td>Clavicular head: medial one-third of clavicle</td>
</tr>
<tr>
<td>Insertion</td>
<td>Sternal head: lateral one-half of superior nuchal line</td>
</tr>
<tr>
<td></td>
<td>Clavicular head: lateral mastoid process</td>
</tr>
<tr>
<td>Innervation</td>
<td>Accessory nerve (and branches of anterior rami of C2 – C3)</td>
</tr>
<tr>
<td>Action</td>
<td>Acting unilaterally: lateral rotation of head towards same side and rotation of head towards opposite side</td>
</tr>
<tr>
<td></td>
<td>Acting bilaterally: dorsal extension of head</td>
</tr>
</tbody>
</table>

The sternocleidomastoid muscle has two heads: the sternal head originates from the upper part of the anterior manubrium of the sternum and inserts onto the lateral one-half of the superior nuchal line (occipital bone) and the clavicular head originates from the superior surface of the medial one-third of the clavicle and inserts onto the lateral surface of the mastoid process (temporal bone).

The sternocleidomastoid is innervated by the accessory nerve (CN XI) and by branches of anterior rami of C2 – C3.

Individually each muscle will lift the head towards the shoulder on the same side (lateral flexion) and rotate the head to turn to face the opposite side. Acting together the muscles draw the head forward, through extension of the neck at the atlanto-occipital joints (bilateral extension).

![Diagram of the neck muscles](image_url)
Anatomy: Neck

Regarding the neck, which of the following statements is CORRECT:

a) The posterior triangle is bounded anteriorly by the anterior margin of the sternocleidomastoid.

b) The anterior triangle is bounded superiorly by the inferior margin of the mandible.

c) The posterior triangle is bounded posteriorly by the anterior margin of the scalenus anterior.

d) The posterior triangle is bounded inferiorly by the lateral one-third of the clavicle.

e) The anterior triangle is bounded laterally by the anterior margin of the trapezius muscle.

< Previous Next > See Answer Something wrong?
Question: Neck

Question 64 of 78

Regarding the neck, which of the following statements is CORRECT:

a) The posterior triangle is bounded anteriorly by the anterior margin of the sternocleidomastoid.

b) The anterior triangle is bounded superiorly by the inferior margin of the mandible.

c) The posterior triangle is bounded posteriorly by the anterior margin of the scalenus anterior.

d) The posterior triangle is bounded inferiorly by the lateral one-third of the clavicle.

e) The anterior triangle is bounded laterally by the anterior margin of the trapezius muscle.

Answer

The anterior triangle is bounded superiorly by the inferior margin of the mandible.

Notes

The trapezius and sternocleidomastoid divide the neck into anterior and posterior triangles on each side.

Each anterior triangle is bounded:

- medially by the median vertical line of the neck
- laterally by the anterior margin of the sternocleidomastoid
- superiorly by the inferior margin of the mandible.

Each posterior triangle is bounded:

- anteriorly by the posterior margin of the sternocleidomastoid
- posteriorly by the anterior margin of the trapezius
- basally by the middle one-third of the clavicle
- apically by the occipital bone.

By Olek Remasz (wvli-pl; Orem, commons; Orem) [Modified by user:madhersa98 (original image Filip Musciul cell base.png) (CC BY 3.0)], via Wikimedia Commons
Anatomy: Neck

Question 45 of 78

A 29 year old man is brought to ED having been involved in a road traffic collision in which he has sustained significant trauma to the head and neck. Imaging shows a large haematoma inferior to the left jugular foramen. On examination you note pupillary constriction and ptosis of the right eye, and loss of sweating over the right side of the face. Which of the following ganglia is most likely being compressed:

a) Otic ganglion
b) Pterygopalatine ganglion
c) Submandibular ganglion
d) Superior cervical ganglion
e) Ciliary ganglion

< Previous Next > See Answer Something wrong? Clear Exam
Anatomy: Neck

Question 43 of 78

A 29-year-old man is brought to ED having been involved in a road traffic collision in which he has sustained significant trauma to the head and neck. Imaging shows a large haematoma inferior to the left jugular foramen. On examination you note papillary constriction and ptosis of the right eye, and loss of sweating over the right side of the face. Which of the following ganglia is most likely being compressed?

a) Otic ganglion
-

b) Prevertebral ganglion
-

c) Submandibular ganglion
-

D) Superior cervical ganglion
✓

E) Ciliary ganglion

Answer

The superior cervical ganglia, supraventricular ganglion of the sympathetic chain, supplies sympathetic innervation to the head and neck. Damage to the sympathetic chain results in Horner’s syndrome, characterised by miosis, partial ptosis and anhydrosis. The remaining ganglia are parasympathetic ganglia.

Notes

The sympathetic trunks are two parallel cords that run from the base of the skull to the coccyx. Along the way they are punctuated by ganglia, collections of neural cells inside the CNS. The cervical part of the sympathetic trunk is anterior to the longus colli and longus capitis muscles and posterior to the common carotid artery in the carotid sheaths.

There are three ganglia along the course of the sympathetic trunk in the cervical region within which ascending preganglionic sympathetic fibres from upper thoracic spinal cord levels synapse with postganglionic sympathetic fibres. The postganglionic fibres are distributed from these ganglia in branches, called grey ram cervicalis, which connect with cervical spinal nerves C1 – C8.

Superior cervical ganglion

The superior cervical ganglion is responsible for sympathetic innervation to the structures in the head and neck. The upper cervical ganglion lies in the area of vertebrae C5 – C2 and has branches to:
- the internal and external carotid arteries
- the spinal nerves C3 – C4
- the pharynx
- the heart.

Middle cervical ganglion

The middle cervical ganglion lies in the area of vertebra C6 and has branches to:
- cervical spinal nerves C3 – C6
- the heart.

 Inferior cervical ganglion

The inferior cervical ganglion lies in the area of vertebra C7 (anterior to the neck of 6, posterior to the first part of the subclavian artery). It combines with the first thoracic ganglion to form the cervicothoracic ganglion and has branches to:
- spinal nerves C7 – T1
- the vertebral and subclavian artery
- the heart.

This ganglion may also receive white rami communicans from thoracic spinal nerve T1 – T2.

Horner’s syndrome

The sympathetic fibres can be stretched or damaged along their course and if unilaterally disturbed may produce Horner’s syndrome, a triad of partial ptosis (due to paralysis of the superior tunic muscle), miosis (due to paralysis of the dilator pupil muscle) and anhydrosis (due to loss of innervation to the sweat glands).

Secondary changes may also include ipsilateral vasodilatation (due to loss of sympathetic control of subcutaneous blood vessels) and enophthalmos (due to paralysis of the orbicularis muscle).

Possible causes of Horner’s syndrome include:
- Apical lung tumour (Pancoast’s tumour) eroding the cervicothoracic ganglion
- Thromboembolism
- Penetrating injury to neck
- Lymphadenopathy
- Cervical rib
- Injury to carotid arteries

< Previous Next >
Anatomy: Neck

Question 46 of 78

The sensory innervation of the nasopharynx is provided by which of the following nerves:

- a. Glossopharyngeal nerve
- b. Maxillary nerve
- c. Mandibular nerve
- d. Facial nerve
- e. Vagus nerve

See Answer
Anatomy: Neck

Question No. 9

The sensory innervation of the nasopharynx is provided by which of the following nerves?

- a) Glossopharyngeal nerve
- b) Maxillary nerve
- c) Mandibular nerve
- d) Facial nerve
- e) Vagus nerve

Answer

Each subdivision of the pharynx has different sensory innervation:

- the nasopharynx is innervated by the maxillary nerve
- the oropharynx is innervated by the glossopharyngeal nerve
- the laryngopharynx is innervated by the vagus nerve.

Notes

The pharynx is a muscular viselike structure that connects the oral and nasal cavities in the head to the larynx and the oesophagus in the neck.

The pharynx is attached above to the base of the skull, and is continuous below, approximately at the level of vertebra C4, with the top of the oesophagus.

The pharynx is separated from the posterior cranial fossa by a thin retromandibular space, bordered anteriorly by the buccopharyngeal fascia and posteriorly by the prevertebral fascia.

Anterior aspect

The walls of the pharynx are attached anteriorly to the margins of the nasal cavity, oral cavity and larynx, dividing the pharynx into the nasopharynx, oropharynx and laryngopharynx respectively.

The posterior aspect of the nasopharynx opens into the nasopharynx, the oropharynx is inferiorly opened into the oropharynx and larynx is posteriorly opened into the laryngopharynx.

Muscles

The musculature of the pharynx wall are organized into two groups.

The three cranial nerve muscles consist of the pharyngeal cavity sequentially to enervate a muscle of the pharynx and the muscle of the pharynx in the swallowing.

The three cranial nerves innervate the muscles of the pharynx wall and act as muscles of the pharynx wall.

Neural supply

The muscles of the pharynx are all innervated via the vagus nerve except the stylopharyngeus muscle, innervated by the glossopharyngeal nerve. The branches of the vagus and glossopharyngeal nerves form a pharyngeal plexus in the outer surface of the pharyngeal wall.

Each subdivision of the pharynx has different sensory innervation:

- the nasopharynx is innervated by the maxillary nerve
- the oropharynx is innervated by the glossopharyngeal nerve
- the laryngopharynx is innervated by the vagus nerve.

Lymphatics

Lymphatic vessels from the pharynx drain into the deep cervical lymph nodes.

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam

By OpenStax College (CC BY 3.0), via Wikimedia Commons
Anatomy: Neck

Question 47 of 78

Regarding the ligaments of the spinal column, which of the following statements is INCORRECT:

a. The ligamenta flava pass between the laminae of adjacent vertebrae.
b. The supraspinous ligament connects and passes along the tips of the vertebral spinous processes.
c. The ligamentum nuchae supports the head and resists over-flexion.
d. The interspinous ligaments pass between the spinous processes of adjacent vertebrae.
e. Above C7, the ligamenta flava becomes the ligamentum nuchae.

< Previous Next > See Answer Something wrong?
Anatomy: Neck
Question 47 of 70

Regarding the ligaments of the spinal column, which of the following statements is INCORRECT?

- The ligamentum flavum passes between the laminae of adjacent vertebrae.
- The supraspinous ligament connects and passes along the tips of the vertebral spines processes from vertebra C7 to the sacrum. From vertebra C7 to the skull, the ligament is more structurally distinct and referred to as the ligamentum nuchae.
- Above C7, the ligamentum flavum becomes the ligamentum nuchae.

Answer
The supraspinous ligament connects and passes along the tips of the vertebral spines processes from vertebra C7 to the sacrum. From vertebra C7 to the skull, the ligament is more structurally distinct and referred to as the ligamentum nuchae.

Notes
Joints between vertebrae are reinforced by numerous ligaments.

Ligament	Location	Function
Anterior longitudinal ligament | Extends from base of skull to sacrum, attached along its length to vertebral bodies anteriorly | Limits extension of vertebral column, supports aenuous thoracic anteriorly, restricts gravitational pull
Posterior longitudinal ligament | Extends from C2 to sacrum, attached along its length to vertebral bodies posteriorly | Limits flexion of vertebral column, supports aenuous thoracic posteriorly, restricts gravitational pull
Ligamentum flavum | Pass between laminae of adjacent vertebrae | Restricts separation of laminae to flexion and assist in extension back to anatomical position
Supraspinous ligament | Passes between and connects tips of spinous processes, extending from C7 to sacrum | Limits flexion of vertebral column
Ligamentum nuchae | Passes between and connects tips of spinous processes, extending from skull to spinous processes of C7 | Supports head, restricts flexion of neck and helps return head to anatomical position
Interspinous ligaments | Pass between spinous processes of adjacent vertebrae | Limit flexion of vertebral column

Ligamentum flavum
The anterior longitudinal ligament is attached superiority to the base of the skull and inferiorly to attach to the anterior aspect of the sacrum. Along its length it is attached to the vertebral bodies and intravertebral discs anteriorly. The anterior longitudinal ligament acts to limit extension of the vertebral column, support the aenuous thoracic anteriorly and restrict gravitational pull.

The posterior longitudinal ligament is on the posterior surface of the vertebral bodies and inferiorty to the anterior surface of the vertebral column. It is attached along the length to the vertebral bodies and intravertebral discs posteriorly. The posterior longitudinal ligament acts to support the posterior aspect of the vertebral bodies and the aenuous thoracic, and limit flexion of the vertebral column.

The ligamentum flavum, on each side, passes between the laminae of adjacent vertebrae, forming part of the posterior surface of the vertebral column. The ligamentum flavum restricts flexion of the laminae to flexion and assist in extension back to the anatomical position.

The supraspinous ligament connects and passes along the tips of the vertebral spinous processes from vertebra C7 to the sacrum. From vertebra C7 to the skull, the ligament is more structurally distinct and referred to as the ligamentum nuchae.

The ligamentum nuchae is attached superiority to the skull (from the external cephalic vein posterior to the cranial nerve) inferiorly to the spinous processes of C7 and between these two points to the spinous processes of the cervical vertebrae. The ligamentum nuchae supports the head, restricts flexion and helps to return the head to the anatomical position. The ligament provides attachment for adjacent muscles.

The interspinous ligaments pass between adjacent vertebral spinous processes. Extending posteriorly with the supraspinous ligament and anteriorly with the ligamentum flavum on each side.

By Henry Vincent Carter (Public domain), via Wikimedia Commons
Anatomy: Neck

Regarding the larynx, which of the following statements is INCORRECT:

- **a** The cricoid cartilage completely encircles the airway.
- **b** The cricoid cartilage is the largest of the three unpaired cartilages.
- **c** The thyroid cartilage articulates with the hyoid bone superiorly.
- **d** The paired arytenoid cartilages articulate with the cricoid cartilage inferiorly.
- **e** The cricoid cartilage articulates with the inferior horns of the thyroid cartilage posterolaterally.
Anatomy: Neck

Regarding the neck fascia, which of the following statements is INCORRECT:

- a) The viscera of the neck lie anterior to the prevertebral fascia.
- b) The prevertebral layer surrounds the prevertebral muscles which act as weak neck flexors.
- c) The sternocleidomastoid lies superficial to the deep fascia.
- d) The retropharyngeal space extends from the base of the skull to the upper posterior mediastinum.
- e) The prevertebral space lies within the prevertebral fascia.
Anatomy: Neck

Question 9 of 76

Regarding the neck fascia, which of the following statements is INCORRECT?

a) The visera of the neck lie anterior to the prevertebral fascia. ✗

b) The prevertebral fascia surrounds the prevertebral muscles which act as neck flexors.

c) The sternocleidomastoid lies superficial to the deep fascia. ✓

d) The retropharyngeal space extends from the base of the skull to the upper posterior mediastinum.

e) The prevertebral space lies within the prevertebral fascia.

Answer

The transverse and sternocleidomastoid muscles lie within the investing layer of the deep cervical fascia.

Notes

Neck Fascia

The neck fascia is divided into the superficial and deep fascia.

The deep fascia is further divided into:

1. An investing layer (blue) which lies deep to the superficial fascia and surrounds all structures in the neck.

2. The prevertebral layer (green) which surrounds the vertebral column and the deep muscles associated with the back.

3. The pretracheal layer (yellow) which encloses the visera of the neck (larynx, trachea, oesophagus, and thyroid).

4. The carotid sheath (red) which receives a contribution from the other three fascial layers and surrounds the two major neurovascular bundles on either side of the neck (containing the carotid, internal jugular vein, and vagus nerve).

The transverse and sternocleidomastoid muscles lie within the investing layer of the deep cervical fascia.

The visera of the neck lie anterior to the prevertebral fascia, within the prevertebral layer.

The prevertebral muscles lie within the prevertebral fascial layer and act as neck flexors.

Modified by FRCEM Success. Original by Henry Valentine Carter (Public domain) via Wikimedia Commons

Neck spaces

Between the fascial layers in the neck are spaces that may provide a conduit for the spread of infections from the neck to the mediastinum:

- The pretracheal space lies between the investing layer, the cervical fascia and the pretracheal fascia and passes between the neck and the anterior part of the superior mediastinum.

- The retropharyngeal space lies between the prevertebral fascia, the part of the prevertebral fascia posterior to the pharynx, and the prevertebral fascia and extends from the base of the skull to the upper part of the posterior mediastinum.

- The prevertebral space is within the prevertebral layer as it splits into two laminae, extending from the base of the skull and extending through the anterior mediastinum to the diaphragm.
Anatomy: Neck

How many vertebrae make up the vertebral column:

- a 26
- b 30
- c 33
- d 29
- e 27

< Previous Next > See Answer Something wrong? Clear Exam
Anatomy: Neck

Question 50 of 78

How many vertebrae make up the vertebral column:

a) 26
b) 30 ❌
c) 33 ✔️
d) 29
e) 27

Answer

There are 33 vertebrae: seven cervical, twelve thoracic, five lumbar, five fused sacral and four fused coccygial vertebrae.

Notes

The vertebral column consists of 33 vertebrae: seven cervical, twelve thoracic, five lumbar, five fused sacral and four fused coccygial vertebrae.

A typical vertebra consists of a vertebral body and a vertebral arch.

The vertebral body is anterior and is separated from adjacent vertebral bodies by fibrocartilaginous intervertebral discs. The size of the vertebral body increases inferiorly as the amount of weight supported increases.

The vertebral arch is anchored to the posterior surface of the vertebral body by two pedicles, which form the lateral pillars of the arch. The roof of the vertebral arch is formed by the right and left laminae which fuse at the midline.

A spinous process projects posteriorly and inferiorly from the roof of the vertebral arch and is a site for muscle and ligament attachment.

On each side of the vertebral arch, a transverse process extends laterally from the region where a lamina meets a pedicle and is a site for articulation with ribs in the thoracic region. From the same region, a superior articular process and an inferior articular process articulate with similar processes on adjacent vertebrae.

The vertebral arches are aligned to form the lateral and posterior walls of the vertebral foramen; the vertebral foramina of all the vertebrae together form the vertebral canal.

By Jmarks (Own work) [CC BY-SA 3.0], via Wikimedia Commons

FRCEM Success
We are an online revision resource for FRCEM Primary and Intermediate exam preparation.

Terms & Conditions
Get in Touch

Resources
- The Royal College of Emergency Medicine
- Irish Association for Emergency Medicine
- Advanced Trauma Life Support
- Resuscitation Council (UK)
- Trauma4me
- Radiopaedia
- Advanced Life Support Group
- Emergency Medicine Journal
- Liverpool Intensive Care
- Instant Anatomy
- Patient.co.uk

©2014 - 2017 FRCEM Success | Website designed & hosted by Cyberfrog Design
Anatomy: Neck

Which of the following nerves curves under and behind the subclavian artery before ascending in the neck:

- a) Accessory nerve
- b) Right superior laryngeal nerve
- c) Left superior laryngeal nerve
- d) Right recurrent laryngeal nerve
- e) Left recurrent laryngeal nerve

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 13 of 79

Which of the following nerves curves under and behind the subclavian artery before ascending in the neck:

a) Accessory nerve

b) Right superior laryngeal nerve

c) Left superior laryngeal nerve

d) Right recurrent laryngeal nerve

Answer

The right recurrent laryngeal nerve originates in the root of the neck, as a branch of the right vagus nerve as it reaches the lower edge of the first part of the subclavian artery. It passes around the subclavian artery and travels upwards and medially in a groove between the trachea and the oesophagus as it heads to the larynx.

Notes

The left recurrent laryngeal nerve originates more inferiorty from the left vagus nerve as it crosses the arch of the aorta in the superior mediastinum. It passes below and behind the arch of the aorta and then ascends beside the trachea to the larynx.

Damage to the recurrent laryngeal nerves may result in hoarseness, respiratory obstruction, inability to speak and loss of sensation below the vocal cord.

Causes of damage include:

- thermal or parathroid surgery
- mediastinal lymphadenopathy
- cricothyroidotomy
- aneurysm of the aortic arch
- lung cancer in the apex of the right lung
- malignancy infiltrating into the ‘aortopulmonary window’.

Resources

- The Royal College of Emergency Medicine
- High Incidence for Emergency Medicine
- Advanced Life Support Course
- Emergency Medicine Journal
- www.bletsch.org
- Irish Academy
- Pelvic Cert II

FRCEMSuccess

We are committed to providing quality resources for FRCEM Primary and Intermediate exam preparation.

Terms & Conditions
Get in Touch

©2014 – 2017 FRCEM Success. Website designed & hosted by Cyberfrog Designs.
Anatomy: Neck

Question 52 of 78

Regarding the tonsils, which of the following statements is CORRECT:

a. The adenoid tonsils are found on the lateral walls of the oropharynx.
b. The palatine tonsils drain mainly to the jugulodigastric lymph node.
c. The palatine tonsils are found on the lateral walls of the nasopharynx.
d. The lingual tonsil is found on the anterior two-thirds of the tongue.
e. The palatine tonsils lie just posterior to the palatopharyngeal arch.

< Previous Next > See Answer

Something wrong?
Anatomy: Neck

Question 5 of 78

Regarding the tonsils, which of the following statements is CORRECT:

a) The adenoid tonsils are found on the lateral walls of the oropharynx. ✗
b) The palatine tonsils drain mainly to the jugulodigastric lymph node. ✓
c) The palatine tonsils are found on the lateral walls of the nasopharynx.
d) The lingual tonsil is found on the anterior two-thirds of the tongue.
e) The palatine tonsils lie just posterior to the palatopharyngeal arch.

Answer

The lymphatic drainage of the palatine tonsils drains through the pharyngeal wall into the jugulodigastric nodes in the region where the facial vein drains into the internal jugular vein, inferior to the posterior belly of the digastric muscle.

Notes

Large collections of lymphoid tissue are found on the pharyngeal surface (posterior one-third) of the tongue and collectively known as the lingual tonsil.

The adenoid (pharyngal) tonsil is a large collection of lymphoid tissue in the mucosa covering the roof of the nasopharynx.

The palatine tonsils are on the lateral walls of the oropharynx. On each side there is a large oval collection of lymphoid tissue in the mucosa lining the superior constrictor muscle, between the palatoglossal and palatopharyngeal arches and just posterior to the oropharyngeal isthmus.

Blood supply

The palatine tonsils are highly vascular, receiving blood from the ascending palatine and tonsillar branches of the facial artery, the descending palatine branch of the maxillary artery, a palatine branch of the ascending pharyngeal artery and a branch of the lingual artery.

Tonsillar tonsils may result in severe obstruction, which may occur from the branches of the facial, ascending pharyngeal, maxillary and lingual arteries, or from parasympathetic veins.

Lymphatics

The lymphatic drainage of the palatine tonsils drains through the pharyngeal wall into the jugulodigastric nodes in the region where the facial vein drains into the internal jugular vein, inferior to the posterior belly of the digastric muscle.
Anatomy: Neck

Question 53 of 78

Regarding the ligaments of the spinal column, which of the following statements is CORRECT:

a. The anterior longitudinal ligament lines the anterior surface of the vertebral canal.
b. The posterior longitudinal ligament lines the posterior surface of the vertebral canal.
c. The ligamenta flava pass between the transverse processes of adjacent vertebrae.
d. The posterior longitudinal ligament limits extension of the vertebral column.
e. The ligamentum nuchae resists flexion of the neck and helps return the head to the anatomical position.

< Previous Next > See Answer Something wrong? Clear Exam
Anatomy: Neck

Question Navigator:
1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Notes:
Joints between vertebrae are reinforced by numerous ligaments.

Ligament: Location: Function:

Anterior longitudinal ligament: Extends from base of skull to sacrum, attached by length to vertebral bodies anteriorly. Acts as a restraint to prevent flexion of the vertebrae.

Posterior longitudinal ligament: Extends from C7 to sacrum, attached by length to vertebral bodies posteriorly. Acts as a restraint to prevent extension of the vertebrae.

Ligamentum flavum: Lies between facets of adjacent vertebrae. Acts as a restraint to prevent flexion of the vertebrae.

Transverse ligament: Lies between pedicles of adjacent vertebrae. Acts as a restraint to prevent lateral flexion of the vertebrae.

Ligamentum nuchae: Lies between the transverse processes of the vertebrae. Acts as a restraint to prevent extension of the neck.

Intraspinal ligaments: Passes between spinous processes of adjacent vertebrae. Acts as a restraint to prevent lateral flexion of the vertebrae.
Anatomy: Neck

Question 54 of 78

The sensation produced by touching the arm with cotton wool during a neurological examination is mediated by which of the following spinal tracts:

- a Anterior spinothalamic tract
- b Lateral spinothalamic tract
- c Anterior corticospinal tract
- d Posterior column
- e Anterior spinocerebellar tract

< Previous Next > See Answer Something wrong?
A 29 year old male racing driver has fractured a cervical vertebra. On examination, he has weakness of the right side of his body with upgoing plantars, loss of pain and temperature sensation in his left limbs, with normal fine-touch sensation over all four limbs. This clinical picture is most likely seen in a lesion of the:

- [] Anterior column, left side
- [] Anterior column, right side
- [] Lateral column, right side
- [] Lateral column, left side
- [] Posterior column, right side
Anatomy: Neck

Question 56 of 78

Regarding the neck muscles, which of the following statements is INCORRECT:

- a. The suprhyoid muscles pass in a superior direction from the hyoid bone to the skull or mandible.
- b. The suprhyoid muscles act to elevate the hyoid bone.
- c. The infrahyoid muscles act to depress the hyoid bone and the larynx.
- d. The suprhyoid muscles act to elevate the mandible.
- e. The suprhyoid muscles play a vital role in swallowing.

< Previous Next > See Answer

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam

FRCEM Success

We are an online revision resource for FRCEM Primary and Intermediate exam preparation.

Terms & Conditions
Get in Touch

Resources

- The Royal College of Emergency Medicine
- Irish Association for Emergency Medicine
- Advanced Trauma Life Support
- Resuscitation Council (UK)
- TeachMeAnatomy
- Trauma.org
- Radiopaedia

- Advanced Life Support Group
- Emergency Medicine Journal
- Lifeinthefastlane
- Instant Anatomy
- Patient.co.uk
Anatomy: Neck

Question 56 of 78

Regarding the neck muscles, which of the following statements is INCORRECT?

a) The suprathyroid muscles pass in a superior direction from the hyoid bone to the skull or mandible.

b) The suprathyroid muscles act to elevate the hyoid bone.

c) The infrahyoid muscles act to depress the hyoid bone and the larynx.

d) The suprathyroid muscles act to elevate the mandible.

e) The suprathyroid muscles play a vital role in swallowing.

Answer

The suprathyroid muscles act to elevate the hyoid bone, as occurs in swallowing, but also assist with depression of the mandible, as occurs in speaking the sounds.

Notes

Muscles superior to the hyoid are called suprathyroid muscles and include the stylohyoid, digastric, mylohyoid, and geniohyoid muscles. The suprathyroid muscles pass in a superior direction from the hyoid bone to the skull or mandible and act to raise the hyoid bone, as occurs in swallowing.

Muscles inferior to the hyoid are the infrahyoid muscles and include the omohyoid, sternohyoid, thyrohyoid, and sternothyroid. The infrahyoid muscles attach the hyoid bone to inferior structures and act to depress the hyoid bone and the larynx. They also provide a stable point of attachment for the suprathyroid muscles.
Anatomy: Neck

Question 57 of 78

Regarding the thyroid gland, which of the following statements is INCORRECT:

a. The isthmus of the thyroid crosses the anterior surface of the second and third tracheal rings.

b. The thyroid gland lies anterior to the pretracheal fascia.

c. The thyroid gland lies deep to the infrahyoid muscles.

d. The thyroid gland spans between the C5 and T1 vertebrae.

e. The recurrent laryngeal nerves pass deep to the lateral lobes of the thyroid gland to enter the larynx.

< Previous Next > See Answer Something wrong?

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam
Anatomy: Neck

Quarter 1 of 18

Regarding the thyroid gland, which of the following statements is INCORRECT?

- The isthmus of the thyroid crosses the anterior surface of the second and third tracheal rings.
- The thyroid gland lies anterior to the pretracheal fascia.
- The thyroid gland lies deep to the subhyoid muscles.
- The thyroid gland spans between the C5 and T1 vertebrae.
- The recurrent laryngeal nerves pass deep to the lateral lobes of the thyroid gland to enter the larynx.

Answer

The thyroid gland lies within the pretracheal fascia, together with the trachea and the esophagus.

Notes

The thyroid gland is anterior in the neck, below and lateral to the thyroid cartilage, and spanning between the C5 and T1 vertebrae.

It has two lateral lobes which cover the anterolateral surfaces of the trachea, cricoid cartilage and the lower part of the thyroid cartilage connected by the isthmus which crosses the anterior surface of the second and third tracheal cartilages.

Relations

If it lies deep to the sternohyoid, sternothyroid and omohyoid muscles, in the visceral compartment of the neck, together with anterior to the pharynx, trachea and esophagus, and surrounded by the pretracheal fascia.

Structures vulnerable in thyroid surgery include:

- Thyroid ima artery
- Inferior thyroid veins
- Anterior jugular veins
- Recurrent laryngeal nerve
- Carotid sinus of the aorta
- Oesophagus
- Parathyroid glands

Blood supply

The thyroid gland is supplied predominantly by the superior thyroid artery (branch of the external carotid artery) and the inferior thyroid artery (branch of the thyrocervical trunk from the subclavian artery). Occasionally a small thyroid ima artery arises from the brachiocephalic trunk or the arch of the aorta and ascends to supply the thyroid gland.

Venous supply

The venous drainage of the thyroid is to the superior and middle thyroid veins (draining to the internal jugular vein) and the inferior thyroid veins (draining to the brachiocephalic vein).

Lymphatics

Lymphatic drainage of the thyroid gland is to nodes beside the trachea (paratracheal nodes) and to deep cervical nodes inferior to the omohyoid muscle along the internal jugular vein.

Recurrent laryngeal nerve

The thyroid gland is closely related to the recurrent laryngeal nerves. After branching from the vagus nerve and looping around the subdivision artery on the right and the arch of the aorta on the left, the recurrent laryngeal nerves ascend in the neck in a groove between the trachea and esophagus. They pass deep to the pretracheal surface of the lateral lobes of the thyroid gland and enter the larynx by passing deep to the lower margin of the inferior constrictor of the pharynx.

The recurrent laryngeal nerve is the most commonly injured nerve during thyroid surgery. The recurrent laryngeal nerves supply sensory innervation to the laryngeal mucosa below the level of the vocal folds and motor innervation to all intrinsic muscles of the larynx except for the cricothyroid muscle.

Hyoid bone

Superior thyroid
cartilage

Thyroid
cartilage

Common
carotid
arteries

Trachea

Isthmus of
the
thyroid

By CFOT (Own work)/CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0), via Wikimedia Commons
Anatomy: Neck

Question 58 of 78

Regarding the larynx, which of the following statements is INCORRECT:

a. The larynx is suspended from the hyoid bone.
b. The larynx is continuous with the trachea at vertebral level C6.
c. Recurrent laryngeal nerve palsy may result in a hoarse voice.
d. The intrinsic laryngeal muscles are responsible for elevation and depression of the larynx to effect swallowing.
e. Motor innervation to the intrinsic laryngeal muscles is provided by a branch of the vagus nerve.

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 58 of 78

Regard the larynx, which of the following statements is INCORRECT:

a) The larynx is suspended from the hyoid bone.

b) The larynx is continuous with the trachea at vertebral level C6.

c) Recurrent laryngeal nerve palsy may result in a hoarse voice.

d) The intrinsic laryngeal muscles are responsible for elevation and depression of the larynx to effect swallowing.

e) Motor innervation to the intrinsic laryngeal muscles is provided by a branch of the vagus nerve.

Answer

The intrinsic muscles alter the size and shape of the laryngeal inlet and move the vocal folds. The extrinsic muscles are involved in elevation and depression of the larynx to produce swallowing.

Notes

The larynx is suspended from the superior laryngeal and posterior to the trachea by membranes and ligaments. It opens above into the pharynx immediately posterior and slightly inferior to the tongue and the epiglottal orifice of the oral cavity, and blends inferiorly with the trachea at the vertebral level C6.

Function

There are five principal roles of the larynx:

- Phonation
- Phonication (to close the lower respiratory tract for example during swallowing)
- Coughing
- Breathing while straining (vocal cord adduction).

Laryngeal muscles

The laryngeal muscles are divided into intrinsic and extrinsic groups.

The intrinsic muscles alter the size and shape of the laryngeal inlet and move the vocal folds.

The extrinsic muscles are involved in elevation and depression of the larynx to produce swallowing.

Innervation

Motor and sensory innervation of the larynx is provided by the vagus nerve via its superior laryngeal and recurrent laryngeal branches.

The recurrent laryngeal nerves are sensory to the laryngeal cavity below the level of the vocal folds and motor to all intrinsic muscles of the larynx except for the cricothyroid muscle innervated by the superior laryngeal branch of the vagus nerve.

A lesion of the recurrent laryngeal nerves may cause respiratory obstruction, hoarseness, and inability to speak and loss of sensation below the vocal cord.

The superior laryngeal nerve supplies sensation to the mucous membrane above the vocal cords and the taste buds on the epiglottis, and motor innervation to the cricothyroid and the inferior pharyngeal constrictor muscles.

A lesion of the superior laryngeal nerve may cause loss of sensation above the vocal cord and taste on the epiglottis, and a weak hoarse voice.

By Dilek Kerecoglu (wikimedia: Omnis, commons: Omen) [CC BY-SA 3.0 (2.5), (2.0)], via Wikimedia Commons

Resources

- American Academy of Emergency Medicine (AAEM)
- Emergency Medicine Journal
- Emergency Medicine Journal
- Paedriatric
- RCPA
- AAEM
- Emergency Medicine Journal
- Emergency Medicine Journal
- Patient.co.uk

© 2014 - 2017 FRCEM Success, Website designed & tested by Cyberlog Design
Anatomy: Neck

Question 59 of 78

Regarding the larynx, which of the following statements is INCORRECT:

- The cricoid cartilage is the most inferior of the laryngeal cartilages.
- The thyroid cartilage is the largest of the laryngeal cartilages.
- The larynx is formed from three large unpaired cartilages and one smaller paired cartilage.
- The median cricothyroid ligament can be perforated to establish an emergency airway.
- Movement at the cricoarytenoid joints abducts or adducts the vocal ligament.
Anatomy: Neck

Question Navigator

1. The cricothyroid cartilage is the largest of the hyoid bone cartilages?
2. The cartilage cartilage is the largest of the hyoid bone cartilages?
3. The cricothyroid cartilage is the largest of the hyoid bone cartilages?
4. The cricothyroid cartilage is the largest of the hyoid bone cartilages?
5. The cricothyroid cartilage is the largest of the hyoid bone cartilages?

Notes

The hyoid bone is the most prominent of the hyoid bone cartilages and is located above the larynx. The hyoid bone is a key component of the swallowing and speech mechanisms in humans. It is a sesamoid bone, meaning it is not a part of any other skeletal structure.

Reference:

Anatomy: Neck

Question 60 of 78

Regarding the trachea, which of the following statements is INCORRECT:

a. The trachea begins at vertebral level C6.
b. The trachea lies directly anterior to the oesophagus.
c. The thyroidea ima artery is particularly vulnerable in tracheostomy.
d. A cricothyrotomy involves making an opening in the neck inferior to the cricoid cartilage.
e. A cricothyroidotomy is suitable for airway obstruction superior to the vocal folds.
Anatomy: Neck

Question 1 of 2

Regarding the trachea, which of the following statements is INCORRECT?

a) The trachea begins at vertebral level C6. ✗
b) The trachea lies directly anterior to the oesophagus.
c) The thyroidea ima artery is particularly vulnerable in tracheotomy.
d) A tracheostomy involves making an opening in the neck inferior to the cricothyroid cartilage.
e) A cricothyroidotomy is suitable for airway obstruction superior to the vocal folds.

Answer

A cricothyrotomy (involves making an opening in the median cricothyroid ligament (the medial part of the cricothyroid ligament), between the cricoid and thyroid cartilages of the larynx.

Notes

The trachea begins at vertebral level C6, where it is continuous with the larynx above. The trachea lies directly anterior to the oesophagus and travels inferiorly to pass through the thoracic inlet.

Cricothyrotomy

A cricothyrotomy is performed to provide a temporary emergency airway in situations where there is obstruction at or above the level of the larynx, such as oral, nasal, or tracheal intubation is impossible e.g. as a result of inhalation of a foreign body, severe oedema secondary to anaphylactic reaction, or severe head and neck trauma.

Compared with an emergency tracheotomy, it is quicker and easier to perform and associated with fewer complications. It involves making an opening in the median cricothyroid ligament (the medial part of the cricothyroid ligament), between the cricoid and thyroid cartilages of the larynx. The ligament can be palpated in the midline and usually there are only small blood vessels, connective tissue and skin overlying it.

Tracheotomy

At a lower level, the airway can be accessed surgically (or percutaneously) through the anterior wall of the trachea by tracheotomy. Tracheotomy is usually performed in non-emergency situations.

A small transverse incision is placed in the lower third of the neck anteriorly. The strap (infrahyoid) muscles are elevated (laterally and the trachea can be easily visualized. Occasionally it is necessary to divide the isthmus of the thyroid. An incision is typically made between the second and third or the third and fourth tracheal rings and a small tracheotomy tube inserted.

This route of entry is complicated because large veins and part of the thyroid gland overlap this region. Structures particularly vulnerable include the isthmus of the thyroid, the jugular arch connecting the anterior jugular veins, the inferior thyroid veins, the left brachiocephalic vein, the thyroidea ima artery, and the recurrent laryngeal nerve (less commonly).
Anatomy: Neck

Question 61 of 78

Regarding the vertebral canal, which of the following statements is CORRECT:

- The vertebral canal is bounded posteriorly by the vertebral bodies.
- Superiorly the vertebral canal is continuous with the jugular foramen.
- The spinal cord is surrounded by two layers of meninges.
- The subarachnoid space is found between the arachnoid and the dura mater.
- The conus medullaris is the point below which the canal contains only the cauda equina and filum terminale.
Anatomy: Neck

Question 6 of 76

Regarding the vertebral canal, which of the following statements is CORRECT?

a) The vertebral canal is bounded posteriorly by the vertebral bodies. ✗
b) Superficially the vertebral canal is continuous with the jugular foramen.
c) The spinal cord is surrounded by two layers of meninges.
d) The subarachnoid space is found between the arachnoid and the dura mater.
e) The conus medullaris is the point below which the canal contains only the cauda equina and filum terminale.

Answer

The conus medullaris is the point below which the canal contains only the cauda equina and filum terminale.

Notes

The vertebral canal extends from the first cervical vertebra (C1) to the last sacral vertebra (S5). Superiorly the vertebral canal is continuous, through the foramen magnum of the skull, with the cranial cavity.

The vertebral canal is bounded anteriorly by the vertebral bodies, intervertebral discs and the posterior longitudinal ligament, laterally by the vertebral pedicles and posteriorly by the vertebral laminae.

The vertebral canal contains the spinal cord and its protective membranes, together with blood vessels, connective tissue, fat and spinal nerve roots. The conus medullaris is the point below which the canal contains only the cauda equina and filum terminale.

Meninges

The spinal cord is surrounded by a series of three spinal meninges consisting of a dura, arachnoid and pia mater.

The bony walls of the spinal canal are separated from the meninges by the epidural (extradural) space.

The subarachnoid space, containing CSF, is found between the arachnoid and pia mater. The subarachnoid space around the spinal cord is continuous at the foramen magnum with the subarachnoid space surrounding the brain.

Lumbar puncture

In adults, the spinal cord typically ends between L1/L2 whereas the subarachnoid space extends to approximately the lower border of vertebra S2. As a result of this, CSF can be withdrawn from the subarachnoid space in the lower lumbar region without endangering the spinal cord.

When performing a lumbar puncture, the needle passes between adjacent vertebral spinous processes, through the supraspinous and interspinous ligaments and through the ligamentum flavum to enter the extradural space. The needle then continues through the dura and the arachnoid mater to enter the subarachnoid space.

Layers penetrated during lumbar puncture:

- Skin
- Superficial fascia
- Supraspinous ligament
- Interspinous ligament
- Ligamentum flavum (first ‘give’)
- Extradural space
- Dura mater (second ‘give’)
- Subarachnoid space
- Arachnoid mater
- Subarachnoid space (containing CSF)
Anatomy: Neck

The sensory innervation of the oropharynx is provided by which of the following nerves:

a. Glossopharyngeal nerve
b. Maxillary nerve
c. Mandibular nerve
d. Facial nerve
e. Vagus nerve

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 9 of 19

The sensory innervation of the oropharynx is provided by which of the following nerves:

- a) Glossopharyngeal nerve
- b) Trigeminal nerve
- c) Mandibular nerve
- d) Facial nerve
- e) Vagus nerve

Answer

Each subdivision of the pharynx has a different sensory innervation:

- the nasopharynx is innervated by the maxillary nerve
- the oropharynx is innervated by the glossopharyngeal nerve
- the laryngopharynx is innervated by the vagus nerve.

Notes

The pharynx is a narrow subglottic structure that connects the oral and nasal cavities in the head to the larynx and the oropharynx in the neck.

The pharynx is accessed above the base of the skull, and is continuous below, approximately at the level of vertebra C6, with the top of the oropharynx.

The pharynx is separated from the posterior vertebral column by a thin retropharyngeal space, bordered anteriorly by the buccopharyngeal fascia and posteriorly by the pretracheal fascia.

Anteriorly:

The walls of the pharynx are attached anteriorly to the margins of the nasal cavities, oral cavity and larynx, dividing the pharynx into the nasopharynx, oropharynx and laryngopharynx respectively.

The posterior apertures of the nasal cavities open into the nasopharynx, the oropharynx and larynx opens into the laryngopharynx.

The pharyngostomy tube (from the middle ear) opens into the lateral walls of the nasopharynx.

Muscles

The muscles of the pharyngeal wall are organized into two groups.

The three pairs of constrictor muscles consist of the pharyngeal cavity sequentially to move a bolus of food through the pharynx and into the esophagus during swallowing.

The three longitudinal muscles elevate the pharyngeal wall, or during swallowing, pull the pharyngeal wall up and over a bolus of food being moved through the pharynx into the esophagus.

Nerves supply:

The muscles of the pharynx are all innervated by the vagus nerve except the stylopharyngeus muscle, innervated by the glossopharyngeal nerve. The branches of the vagus and glossopharyngeal nerves form the pharyngeal plexus in the outer muscle of the pharyngeal wall.

Each subdivision of the pharynx has a different sensory innervation:

- the nasopharynx is innervated by the maxillary nerve
- the oropharynx is innervated by the glossopharyngeal nerve
- the laryngopharynx is innervated by the vagus nerve.

Lymphatics

Lymphatic vessels from the pharynx drain into the deep cervical lymph nodes.
Anatomy: Neck

Question 63 of 78

Regarding the intervertebral disc, which of the following statements is CORRECT:

a. Herniation of the intervertebral disc usually occurs in an anterior direction.

b. The intervertebral disc consists of an outer layer called the fibrous pulposus.

c. In L4 - L5 disc herniation, the L5 spinal nerve root is the most commonly affected.

d. Disc herniation most commonly occurs in the thoracic region.

e. Herniation of the intervertebral disc occurs when the outer fibrous layer herniates through vertebral bodies.

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question 63 of 78

Regarding the intervertebral disc, which of the following statements is CORRECT:

a) Herniation of the intervertebral disc usually occurs in an anterior direction. ×

b) The intervertebral disc consists of an outer layer called the fibrous pulposus.

c) In L4 – L5 disc herniation, the L5 spinal nerve root is the most commonly affected. ✓

d) Disc herniation most commonly occurs in the thoracic region.

e) Herniation of the intervertebral disc occurs when the outer fibrous layer herniates through vertebral bodies.

Answer

A posterolateral herniation of the disc at the L4 – L5 level would be most likely to damage the fifth lumbar nerve root, not the fourth lumbar nerve root, due to more oblique descending of the fifth lumbar nerve root within the subarachnoid space.

Notes

Each vertebral body is separated from adjacent vertebral bodies by fibrocartilaginous intervertebral discs.

The intervertebral disc consists of the outer annulus fibrosus, a complex series of fibrous rings enclosing the central gelatinous nucleus pulposus.

The intervertebral discs allows movements between the vertebrae and act as a shock absorber.

Degenerative changes in the annulus fibrosus can lead to herniation of the nucleus pulposus. A tear can occur within the annulus fibrous through which the nucleus pulposus can track into the intervertebral foramen or into the vertebral canal, compressing the spinal nerve root. It commonly occurs posterolaterally where the annulus fibrosis is not reinforced by the posterior longitudinal ligament, and frequently affects the lumbar region.

The spinal cord only occupies about 2/3s of the space available to it in the vertebral canal. The lower a nerve root, the more steeply it slopes down and the further it has to travel before gaining its intervertebral foramen. Therefore, a posterolateral herniation of the disc at the L4 – L5 level for example, would be most likely to damage the fifth lumbar nerve root, not the fourth lumbar nerve root, due to more oblique descending of the fifth lumbar nerve root within the subarachnoid space.

By OpenStax College (CC BY 3.0) via Wikimedia Commons
Anatomy: Neck

Question 64 of 78

A 21 year old student is sent in to ED by his GP with suspected meningitis. You are about to perform a lumbar puncture. Which of the following structures is normally penetrated in lumbar puncture:

- a) Filum terminale
- b) Pia mater
- c) Ligamentum flavum
- d) Posterior longitudinal ligament
- e) Anterior longitudinal ligament

< Previous Next > See Answer Something wrong?

Question Navigator

1 Answered
2 Answered
3 Answered
4 Answered
5 Answered
6 Answered
7 Answered
8 Answered
9 Answered
10 Answered
11 Answered
12 Answered

Clear Exam
Anatomy: Neck

A 21 year old student is sent in to ED by his GP with suspected meningitis. You are about to perform a lumbar puncture. Which of the following structures is normally penetrated in lumbar puncture:

- Filum terminale
- Peritoneum
- Ligamentum flavum
- Posterior longitudinal ligament
- Anterior longitudinal ligament

Answer

The cerebrospinal fluid (CSF) is located in the subarachnoid space, between the arachnoid layer and the pia mater. In a lumbar puncture, the needle penetrates the skin, fascia, supraspinous ligament, interspinous ligament, ligamentum flavum, epidural space, dura mater, subarachnoid space, and arachnoid mater.

By Pierre Van de Velde, Public domain, via Wikimedia Commons

Notes

The vertebral canal extends from the first cervical vertebra (C1) to the last sacral vertebra (S1). Superiorly the vertebral canal is continuous through the foramen magnum of the skull, with the cranial cavity.

The vertebral canal is bounded anteriorly by the vertebral bodies, intervertebral discs and the posterior longitudinal ligament, laterally by the vertebral pedicles and posteriorly by the vertebral laminae.

The vertebral canal contains the spinal cord and its protective membranes, together with blood vessels, connective tissue, fat and spinal nerve roots. The cross-sectional dimensions of the canal are less than below which the canal contains only the cauda equina and filum terminale.

Meninges

The spinal cord is surrounded by a series of three spinal membranes consisting of dura, arachnoid and pia mater.

The bony walls of the spinal canal are separated from the meninges by the epidural (extradural) space.

The subarachnoid space containing CSF is found between the arachnoid and pia mater. The subarachnoid space around the spinal cord is continuous at the foramen magnum with the subarachnoid space surrounding the brain.

Lumbar puncture

In adults, the spinal cord typically ends at L-5, S-1 whereas the subarachnoid space extends to approximately the lower border of vertebra S2. As a result of this, CSF can be withdrawn from the subarachnoid space in the lower lumbar region without endangering the spinal cord.

When performing a lumbar puncture, the needle passes between adjacent vertebral spinous processes, through the supraspinous and interspinous ligaments and through the ligamentum flavum to enter the extradural space. The needle then continues through the dura and the arachnoid mater to enter the subarachnoid space.

Layers penetrated during lumbar puncture:

- Skin
- Superficial fascia
- Supraspinous ligament
- Interspinous ligament
- Ligamentum flavum (first "give")
- Extradural space
- Dura mater (second "give")
- Subarachnoid space
- Arachnoid mater
- Subarachnoid space (containing CSF)
Anatomy: Neck

Question 65 of 78

Regarding the thyroid gland, which of the following statements is CORRECT:

a. The thyroid gland lies directly anterior to the thyroid cartilage.
b. The thyroid gland spans between the C3 - C5 vertebrae.
c. The thyroid gland receives its blood supply predominantly from branches of the internal carotid artery.
d. The recurrent laryngeal nerves pass deep to the posteromedial surface of the lateral lobes.
e. The lymphatics of the thyroid gland drain primarily to submental lymph nodes.

< Previous Next > See Answer Something wrong?

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam
Anatomy: Neck

Branches of the thyroid gland:
- **a.** The thyroid gland lies directly anterior to the thyroid cartilage.
- **b.** The thyroid gland spans between the C5-C6 vertebrae.
- **c.** The thyroid gland receives its blood supply predominantly from branches of the internal carotid artery.
- **d.** The recurrent laryngeal nerves pass deep to the posterior mediastinal surface of the lateral lobes.
- **e.** The lymphatics of the thyroid gland drain primarily to submandibular lymph nodes.

Answer:
- The thyroid gland is closely related to the recurrent laryngeal nerves. After branching from the vagus nerve and running anterior to the subclavian artery on the right and the aorta on the left, the recurrent laryngeal nerves ascend in the neck to run between the trachea and esophagus. They pass deep to the posterior mediastinal surface of the lateral lobes of the thyroid gland and enter the larynx by passing deep to the lower esophagus of the inferior posterior constrictor of the pharynx.

Notes:
- The thyroid gland is anterior to the neck, below and lateral to the thyroid cartilage, and spanning between the C5 and T1 vertebrae.
- It has two lateral lobes (which cover the anterior surfaces of the trachea, cervical cartilage, and the lower part of the thyroid cartilage) connected by the isthmus which crosses the anterior surface of the second and third cervical cartilages.

Relations:
- It lies deep to the sternohyoid, sternothyroid and sternohyoid muscles, in the visceral compartment of the neck, together with anastomosis to the pharynx, trachea and esophagus, and surrounded by the pretracheal fascia.

Structural vulnerability in thyroid surgery includes:
- Thyroid ima artery
- Inferior thyroid vein
- Anterior jugular vein
- Recurrent laryngeal nerve
- Cranial nerve of the phrenix
- Oesophagus
- Parathyroid glands

Blood supply:
- The thyroid gland is supplied predominantly by the superior thyroid artery (branch of the external carotid artery) and the inferior thyroid artery (branch of the thyrocervical trunk from the subclavian artery).
- Occasionally a small thyroid ima artery arises from the brachiocephalic trunk or the arch of the aorta and ascends to supply the thyroid gland.

Venous supply:
- The venous drainage of the thyroid is to the superior and middle thyroid veins (draining to the internal jugular vein) and the inferior thyroid veins (draining to the brachiocephalic veins).

Lymphatics:
- Lymphatic drainage of the thyroid gland is to nodes inside the trachea (paratracheal nodes) and to deep cervical nodes inferior to the omohyoid muscles along the internal jugular vein.

Recurrence (laryngeal nerve):
- The thyroid gland is closely related to the recurrent laryngeal nerves. After branching from the vagus nerve and running anterior to the subclavian artery on the right and the aorta on the left, the recurrent laryngeal nerves ascend in the neck to run between the trachea and esophagus. They pass deep to the posterior mediastinal surface of the lateral lobes of the thyroid gland and enter the larynx by passing deep to the lower esophagus of the inferior posterior constrictor of the pharynx. The recurrent laryngeal nerve is the most commonly injured nerve during thyroid surgery. The recurrent laryngeal nerves supply sensory innervation to the laryngeal cavity below the level of the vocal folds and motor innervation to all intrinsic muscles of the larynx except for the cricothyroid muscle.

Resources:
- The Royal College of Emergency Medicine
- Ask Answered for Emergency Medicine
- Advanced Trauma Life Support
- Essential Cardiac Yuk
- Tactical Medicine
- Trauma: Anatomy
- Radiology
- Advanced Life Support Group
- Emergency Medicine Journal
- Life Support
- Medical student
- Pocketbook
Anatomy: Neck

Question 66 of 78

Regarding the cervical vertebrae, which of the following statements is INCORRECT:

a. The atlas articulates with the articular processes of the axis inferiorly.
b. The axis is characterised by the dens.
c. The dens is held in position by the transverse ligament of atlas.
d. The atlanto-occipital joints allow the head to rotate from side to side.
e. The atlas is the first cervical vertebra.

< Previous Next > See Answer

Something wrong?

Question Navigator

1 Answered
2 Answered
3 Answered
4 Answered
5 Answered
6 Answered
7 Answered
8 Answered
9 Answered
10 Answered
11 Answered
12 Answered

Clear Exam
Anatomy: Neck

Question 6 of 70

Regarding the cervical vertebrae, which of the following statements is INCORRECT:

- a) The atlas articulates with the articular processes of the axis inferiorly. ✗
- b) The axis is characterised by the dens.
- c) The dens is held in position by the transverse ligament of atlas.
- d) The atlanto-occipital joints allow the head to rotate from side to side. ✓
- e) The atlas is the first cervical vertebra.

Answer

The atlanto-occipital joints allow the head to nod up and down on the vertebral column. The atlanto-axial joints allow the head to rotate from side to side.

Notes

Vertebra C1 (the atlas) is distinguished by the lack of a vertebral body, essentially being composed of two lateral masses interconnected by an anterior and posterior arch. Each lateral mass articulates above with an occipital condyle of the skull and below with the superior articular facet of vertebra C2 (the axis). The posterior surface of the anterior arch has an articular facet for the dens of the axis.

The axis is characterised by the large dens, which extends superiorly from its vertebral body to articulate with the anterior arch of the atlas, and by its bivalve spinous process. The dens is held in position by the strong transverse ligament of atlas posterior to it and spanning the distance between the lateral masses of the atlas.

The atlanto-occipital joints allow the head to nod up and down on the vertebral column. The atlanto-axial joints allow the head to rotate from side to side.

By OpenStax College (CC BY 3.0), via Wikimedia Commons
Anatomy: Neck

At birth, the conus medullaris of the spinal cord lies at which of the following vertebral levels:

a. L1
b. L2
c. L3
d. L4
e. L5

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam

FRCEM Success

We are an online revision resource for FRCEM Primary and Intermediate exam preparation.

Terms & Conditions
Get in Touch

Resources

- The Royal College of Emergency Medicine
- Irish Association for Emergency Medicine
- Advanced Trauma Life Support
- Resuscitation Council (UK)
- TeachMeAnatomy
- Trauma.org
- Radiopaedia

- Advanced Life Support Group
- Emergency Medicine Journal
- Lifeinthefastlane
- Instant Anatomy
- Patient.co.uk

©2014 - 2017 FRCEM Success | Website designed & hosted by Cyberfrog Design
Anatomy: Neck

Which of the following spinal tracts conveys nociceptive input from the contralateral side of the body:

- a. Lateral spinothalamic tract
- b. Posterior column
- c. Posterior spinocerebellar tract
- d. Posterior corticospinal tract
- e. Lateral corticospinal tract
Anatomy: Neck

The jugulo-omohyoid lymph node receives lymph drainage primarily from which of the following territories:

- a. Tongue
- b. Tonsils
- c. Lower teeth
- d. Upper teeth
- e. Nasopharynx
Anatomy: Neck

Question 69 of 78

The jugulo-omohyoid lymph node receives lymph drainage primarily from which of the following territories:

- a) Tongue
- b) Tonsils
- c) Lower teeth
- d) Upper teeth
- e) Nasopharynx

Answer

The jugulo-omohyoid node receives lymphatic drainage from the tongue.

Notes

The deep cervical nodes form a chain along the internal jugular vein and are divided into upper and lower groups.

The most superior node in the upper group (lying where the posterior belly of the digastric muscle crosses the internal jugular vein) is the jugulo-digastric node which receives lymphatic drainage from the tonsils and tonsillar region.

The most superior node in the lower group (lying just inferior to the intermediate tendon of the omohyoid muscle) is the jugulo-omohyoid node which receives lymphatic drainage from the tongue.

By Henry Vandyke Carter [Public domain], via Wikimedia Commons
Anatomy: Neck

Question 70 of 78

Which of the following is the most inferior cartilage of the larynx:

a. Cricoid
b. Thyroid
c. Epiglottis
d. Arytenoid
e. Corniculate

< Previous Next > See Answer Something wrong?

Question Navigator

1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam
Anatomy: Neck

Outline of the following is the most inferior cartilage of the larynx:

1. Cricoid
2. Thyroid
3. Epiglottis
4. Sternum

Instructions

Answer:
The cricoid cartilage is the most inferior of the laryngeal cartilages and is responsible for the base of the thyroid cartilage. It lies in the midline and is protected by the surrounding muscles of the neck. The cricoid cartilage is the most inferior cartilage of the larynx and is known as the "Adam's apple." It is a circular cartilage located at the junction of the larynx and trachea and is the most inferior cartilage of the larynx.

Notes:
The cricoid cartilage is a circular cartilage located at the junction of the larynx and trachea. It is located inferior to the thyroid cartilage and is characterized by its bony ring. The cricoid cartilage is important in maintaining the patency of the trachea and its structure is often visible on X-rays.

For more information on the anatomy of the neck, please visit the following websites:

- [National Library of Medicine](https://www.nlm.nih.gov)
- [American Academy of Otolaryngology-Head and Neck Surgery](https://www.entnet.org)
Anatomy: Neck

Question 71 of 78

Regarding the tonsils, which of the following statements is CORRECT:

a. The lingual tonsil is found on the underside of the posterior one-third of the tongue.

b. The adenoid tonsil is a collection of lymphoid tissue found in the mucosa of the soft palate.

c. The palatine tonsils are on the lateral walls of the nasopharynx.

d. The palatine tonsils lie just posterior to the palatoglossal arch.

e. Lymphatics primarily drain to the jugulo-omohyoid lymph node.

< Previous Next > See Answer Something wrong?
Anatomy: Neck

Question Navigator
1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Question:
Regarding the tonsils, which of the following statements is CORRECT?

- The lingual tonsil is found on the anterior one-third of the tongue.
- The palatine tonsils are on the lateral wall of the nasopharynx.
- The palatine tonsils lie just posterior to the palatoglossal arch.
- Lymphoid tissue drains to the jugular nodes/supraclavicular nodes.

Answer:
The palatine tonsils are on the lateral walls of the oropharynx. Each side has a large oval collection of lymphoid tissue in the mucosa lining the superior constrictor muscle, between the palatoglossal arch and palatopharyngeal arches, and just posterior to the oropharyngeal valves.

Notes:
Large collections of lymphoid tissue are found on the pharyngeal surface (posterior one-third) of the tongue and collectively known as the lingual tonsil.

The adenoid (pharyngeal tonsil) is a large collection of lymphoid tissue in the nasopharynx covering the roof of the oropharynx.

The palatine tonsils are on the lateral walls of the oropharynx. On each side there is a large oval collection of lymphoid tissue in the mucosa lining the superior constrictor muscle, between the palatoglossal arch and palatopharyngeal arches, and just posterior to the oropharyngeal valves.

Bleeding:
The palatine tonsils are highly vascular, receiving blood from the ascending palatine and tonsillar branches of the facial artery, the descending palatine branch of the external carotid artery, a palatal branch of the ascending pharyngeal artery, and a branch of the lingual artery.

Transitory wound may result in heavy hemorrhage, which may occur from the branches of the facial, ascending pharyngeal, maxillary and facial arteries, or the paramedian vessels.

Lesions:
The lingual pharynx of the palatine tonsils and courses through the pharyngeal wall into the base of the tongue. The region where the angle of the tonsils and the base of the tongue is the tonsillar notch, a deep, posterior groove in the roof of the mouth, inferior to the posterior faucial pillars of the oropharynx.

Resources:
- The Royal College of Emergency Medicine
- The American Academy of Emergency Medicine
- American College of Physicians
- American Academy of Otolaryngology
- American Academy of Pediatrics
- American Heart Association
- Advanced Life Support (ALS)
Anatomy: Neck

A 65 year old with known breast cancer presents to ED complaining of back pain. Imaging shows metastases compressing the intervertebral foramina between the fourth and fifth cervical vertebrae, and between the fourth and fifth thoracic vertebrae. Which of the following spinal nerves are most likely affected:

- **a** Fourth cervical and fourth thoracic nerves
- **b** Fifth cervical and fifth thoracic nerves
- **c** Fifth cervical and fourth thoracic nerves
- **d** Fourth cervical and fifth thoracic nerves
- **e** Sixth cervical and fifth thoracic nerves

< Previous Next > See Answer Something wrong? Clear Exam
Anatomy: Neck
Question 73 of 78

A 28 year old male was brought into ED by the police following a drunken brawl. He has been punched on his mandible, resulting in subluxation of the atlanto-axial joint. Which of the following movements is most likely to be affected by this movement:

a. Flexion
b. Extension
c. Rotation
d. Lateral flexion
e. Abduction

< Previous Next > See Answer

Question Navigator
1. Answered
2. Answered
3. Answered
4. Answered
5. Answered
6. Answered
7. Answered
8. Answered
9. Answered
10. Answered
11. Answered
12. Answered

Clear Exam
Anatomy: Neck

A 28 year old male was brought into ED by the police following a drunken brawl. He has been punched on his mandible, resulting in subluxation of the atlanto-axial joint. Which of the following movements is most likely to be affected by this movement:

a) Flexion

b) Extension

c) Rotation

d) Lateral Flexion

e) Abduction

Answer

The atlanto-axial joints allow the head to rotate from side to side.

Notes

Vertebra C1 (the atlas) is distinguished by its lack of vertebreal body, essentially being composed of two lateral masses interconnected by an anterior and posterior arch. Each lateral mass articulates above with an occipital condyle of the skull and below with the superior articular facet of vertebra C2 (the axis). The posterior surface of the anterior arch has an articular facet for the dens of the axis.

The axis is characterised by the large dens, which extends superiorly from its vertebral body to articulate with the anterior arch of the atlas, and by its bidual spinous process. The dens is held in position by the strong transverse ligament of atlas posterior to it and spanning the distance between the lateral masses of the atlas.

The atlanto-occipital joints allow the head to nod up and down on the vertebral column.

The atlanto-axial joints allow the head to rotate from side to side.

By OpenStax College (CC BY 3.0), via Wikimedia Commons
Anatomy: Neck

Question 74 of 78

The sternocleidomastoid muscle acts to produce which of the following movements:

a. Flexion and rotation of the head

b. Rotation of the head to face the opposite side and lateral flexion of the head to the opposite side

c. Rotation of the head to face the same side and lateral flexion of the head to the same side

d. Rotation of the head to face the same side and lateral flexion of the head to the opposite side

e. Rotation of the head to face the opposite side and lateral flexion of the head to the same side

< Previous Next > See Answer Something wrong? Clear Exam
Anatomy: Neck

The sternocleidomastoid muscle acts to produce which of the following movements:

- a) Flexion and rotation of the head
- b) Rotation of the head to face the opposite side and lateral flexion of the head to the opposite side
- c) Rotation of the head to face the same side and lateral flexion of the head to the same side
- d) Rotation of the head to face the same side and lateral flexion of the head to the opposite side
- e) Rotation of the head to face the opposite side and lateral flexion of the head to the same side

Answer

Individually each muscle will tilt the head towards the shoulder on the same side (lateral flexion) and rotate the head to turn to face the opposite side. Acting together the muscles draw the head forward, through extension of the neck at the atlanto-occipital joints (dorsal extension).

Notes

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Sternocleidomastoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>• Sternum: head, anterior manubrium of sternum
 • Clavicular: head, medial one-third of clavicle</td>
</tr>
<tr>
<td>Insertion</td>
<td>• Sternum: head, lateral one-half of superior nuchal line
 • Clavicular: head, lateral mastoid process</td>
</tr>
<tr>
<td>Innervation</td>
<td>Accessory nerve (and by branches of anterior rami of C2 – C3)</td>
</tr>
<tr>
<td>Action</td>
<td>• Acting unilaterally: lateral rotation of head towards same side and rotation of head towards opposite side
 • Acting bilaterally: dorsal extension of head</td>
</tr>
</tbody>
</table>

The sternocleidomastoid muscle has two heads; the sternum head originates from the upper half of the anterior manubrium of the sternum and inserts onto the lateral one-half of the superior nuchal line (occipital bone) and the clavicular head originates from the medial one-third of the clavicle and inserts onto the lateral surface of the mastoid process (temporal bone).

The sternocleidomastoid is innervated by the accessory nerve (CN XI) and by branches of anterior rami of C2 – C3.

Individually each muscle will tilt the head towards the shoulder on the same side (lateral flexion) and rotate the head to turn to face the opposite side. Acting together the muscles draw the head forward, through extension of the neck at the atlanto-occipital joints (dorsal extension).
Anatomy: Neck

The vocal ligament is formed by which of the following structures:

- a) Vocal folds
- b) Cricothyroid membrane
- c) Thyrohyoid ligament
- d) Median cricothyroid ligament
- e) Cricothyroid muscle

< Previous Next > See Answer Something wrong?

FRCEM Success

We are an online revision resource for FRCEM Primary and Intermediate exam preparation.

Terms & Conditions Get in Touch

Resources

- The Royal College of Emergency Medicine
- Irish Association for Emergency Medicine
- Advanced Trauma Life Support
- Resuscitation Council (UK)
- TeachMeAnatomy
- Trauma.org
- Radiopaedia

- Advanced Life Support Group
- Emergency Medicine Journal
- Lifeinthefastlane
- Instant Anatomy
- Patient.co.uk

©2014 - 2017 FRCEM Success | Website designed & hosted by Cyberfrog Design
Anatomy: Neck

Question 76 of 78

A 18 year old man presents to ED with gross lip and tongue swelling and difficulty breathing. He has a known peanut allergy and had been eating at a Thai restaurant for dinner. A decision is quickly made that he requires an emergency cricothyrotomy. Which of the following landmarks describes the most appropriate location to make the incision:

- **a** The cricothyroid membrane, between the hyoid bone above and the thyroid cartilage below.
- **b** The cricothyroid membrane, between the thyroid cartilage above and the cricoid cartilage below.
- **c** The cricothyroid membrane between the cricoid cartilage above and the thyroid cartilage below.
- **d** The thyrohyoid membrane, between the thyroid cartilage below and the hyoid bone above.
- **e** The trachea just inferior to the cricoid cartilage.

< Previous Next > See Answer Something wrong?
Anatomy: Neck

A 15-year-old man presents to ED with gross lip and tongue swelling and difficulty breathing. He has a known peanut allergy and had been eating at a Thai restaurant for dinner. A decision is quickly made that he requires an emergency cricothyrotomy. Which of the following landmarks describes the most appropriate location to make the incision?

1) The cricothyroid membrane, between the hyoid bone above and the thyroid cartilage below.
2) The cricothyroid membrane, between the thyroid cartilage above and the cricoid cartilage below.
3) The cricothyroid membrane between the cricoid cartilage above and the thyroid cartilage below.
4) The thyrohyoid membrane, between the thyroid cartilage below and the hyoid bone above.
5) The trachea just inferior to the cricoid cartilage.

Answer

A cricothyrotomy involves making an opening in the median cricothyroid ligament (the medial part of the cricothyroid membrane), between the cricoid cartilage below and the thyroid cartilage above.

Notes

The trachea begins at vertebral level C4, where it is continuous with the larynx above. The trachea lies directly anterior to the esophagus and travels inferiorly to pass through the thoracic inlet.

Cricothyrotomy

A cricothyrotomy is performed to provide a temporary emergency airway in situations where there is obstruction at or above the level of the larynx, such as on a head or neck trauma. The cricothyroid membrane is incised to allow an aspiration catheter to be inserted and secured in place, providing a route for oxygenation and ventilation.

Compared with an emergency tracheostomy, it is quicker and easier to perform and associated with fewer complications. It involves making an opening in the cricothyroid ligament (the medial part of the cricothyroid membrane), between the thyroid and cricoid cartilages of the larynx. The ligament is incised to create a hole and usually there are only small blood vessels, connective tissue and skin overlying it.

Tracheostomy

At a lower level, the airway can be accessed surgically (or percutaneously) through the anterior wall of the trachea by tracheostomy. Tracheostomy is usually performed in non-emergency situations. A small transverse incision is placed in the lower third of the neck anteriorly. The strap muscles are divided laterally and the trachea can be easily visualised. Occasionally it is necessary to divide the larynx of the thorax. An incision is typically made between the second and third or the third and fourth tracheal rings and a small tracheostomy tube inserted.

This route of entry is complicated because large veins and part of the thyroid gland overlie this region. Structures particularly vulnerable include the larynx or trachea (the lower end of the thyroid, the laryngeal arch connecting the anterior jugular veins, the inferior thyroid veins, the left tracheobronchial node, the sternothyroid and sternohyoid, and the recurrent laryngeal nerve (less common)).
Anatomy: Neck

Question 77 of 78

In adults, the conus medullaris of the spinal cord lies at which of the following vertebral levels:

- a. T11/T12
- b. T12/L1
- c. L1/L2
- d. L3/L4
- e. L4/L5

< Previous Next > See Answer Something wrong? Clear Exam
Anatomy: Neck

Question 78 of 78

Regarding the larynx, which of the following statements is INCORRECT:

- a. The cricoid cartilage articulates with the base of the arytenoid cartilages superiorly.
- b. The thyroid cartilage articulates with the cricoid cartilage inferiorly.
- c. The upper free margin of the cricothyroid membrane forms the vocal cords.
- d. The epiglottis is attached to the posterior aspect of the thyroid cartilage.
- e. The cricoid cartilage articulates with the hyoid bone superiorly.

< Previous | See Answer | Submit | Something wrong?
Anatomy: Neck

Question 1 of 1

Regarding the image, which of the following statements is INCORRECT?

- The transverse carotid arteries lie at the base of the lateral carotid sutures posteriorly.
- The transverse carotid arteries lie at the base of the lateral carotid sutures anteriorly.
- The transverse carotid arteries connect to the suboccipital region.
- The common carotid arteries lie at the base of the lateral carotid sutures.

Answer

The transverse carotid arteries lie at the base of the lateral carotid sutures anteriorly.

Notes

- The transverse carotid arteries are the largest arteries in the neck, supplying the brain and facial structures. They originate from the common carotid arteries and run horizontally across the neck, providing blood to various structures.
- The transverse carotid arteries are important for understanding the anatomy and physiology of the neck and head.
- Knowledge of these arteries is crucial for medical professionals, particularly in the fields of neurology and vascular surgery.

Diagram

[Diagram showing the anatomy of the neck, including the transverse carotid arteries, common carotid arteries, and other related structures.]